Re: Problem in plotting Bifurcation Diagram (ListPlot with
- To: mathgroup at smc.vnet.net
- Subject: [mg102203] Re: Problem in plotting Bifurcation Diagram (ListPlot with
- From: juan flores <juanfie at gmail.com>
- Date: Sat, 1 Aug 2009 04:00:10 -0400 (EDT)
- References: <200907290910.FAA19700@smc.vnet.net> <h4rpgo$lbf$1@smc.vnet.net>
On Jul 31, 4:52 am, AH <creativesolution... at gmail.com> wrote: > On Jul 30, 6:35 pm, DrMajorBob <btre... at austin.rr.com> wrote: > > > > > MakeMapFunction is undefined, so of course the code doesn't work... > > although I get a different error. > > > Also note, your semicolon after ListPlot will prevent display of the plot= > . > > > Bobby > > > On Wed, 29 Jul 2009 04:10:48 -0500, AH <creativesolution... at gmail.com> = > > wrote: > > > > Hi > > > I have following piece of code: > > > -----------------------------------------------------------------------= > > --------------------------------- > > > > > > In[1]:=BifurcationDiagram[f_, {r_, rmin_, rmax_, rstep_}, {x_, x0_}, > > > start_, > > > combine_] := > > > Module[{R, temp, MapFunction}, > > > R = Table[r, {r, rmin, rmax, rstep}]; (* The r= > ange > > > of values of the parameter *) > > > MapFunction = MakeMapFunction[{r, x}, f];(* > > > Construct the iterating function *) > > > temp = Nest[MapFunction[R, #] &, x0 + 0.R, sta= > rt + 1];(* Starting > > > iterates \ > > > *) > > > temp = NestList[MapFunction[R, #] &, temp, com= > bine - 1];(* > > > Subsequent \ > > > iterates *) > > > temp = Map[ Union, Transpose[ > > > temp] ]; (* Remove duplicate values from cycles *) > > > Flatten[ MapThread[Thread[{#1, #2}] &, {R, temp}= > ], 1] > > > ]; > > > > In[2]:=ListPlot[BifurcationDiagram[(1 - r) x + (r(2858.16)/(x - 500) > > > ^0.82) - 30000r, \ > > > {r, 0.1, .2, .0001}, {x, 600}, 10000, 100], PlotStyle -> > > > AbsolutePointSize[0.0001]]; > > > ------------------------------------------------------ > > > The following errors are produced: > > > Graphics:: gptn : Coordiantes -30000.5+0.0169522 i {0.1, > > > -30000.5+0.0169522 i }....is not a floating pont. Is there any > > > possible solution to this problem ? > > > Best regards. > > > -------------------------------------------------------- > > > -- > > DrMajor... at bigfoot.com > > You can ignore MakeMapFunction. > In my case the only error is what that has been reported. > May be you can list the errors that you have got. > > The main problem is that how to display deal with complex numbers while > plotting bifurcation diagrams.....Any idea will be very much > appreciated. > > Also, the following link tells that ListPlot cannot be used for > complex numbers.http://www.stephenwolfram.com/publications/articles/computing/92-desi... > ---------------------------------------------------------------------------= > ------------------------------------------------------------- I find this post rather incomplete. Eventhough, I know what you are talking about. Complex roots of your ODE(s) correspond to double-period (or higher) bifurcation points. Read Strogatz. Now, ploting real roots, you get the usual bifurcation diagrams, just like the ones XppAuto produces. I recently plotted these bifurcation diagrams for one and two- parameter systems. You'll find the code at the end of the message (not showing the results. Evaluted and running in M 7.0.0 for Mac). I hope it helps. Cheers, Juan Flores ----- one-parameter ODE ----- f[x_, r_] := r x + x^3 - x^5 Clear[NotComplexQ]; NotComplexQ[c_Complex] := False; NotComplexQ[c_] := True CartProd[l_] := Outer[List, l[[1]], l[[2]]] ArreglaLista[l_] := Select[Map[(x /. #) &, Flatten[l]], NotComplexQ] Points = Flatten[ Map[CartProd, Table[{{r}, ArreglaLista[NSolve[f[x, r] == 0, x]]}, {r, -1, 2, 0.05}]], 2] ListPlot[Points] ----- two-parameter ODE Since the bifurcation diagram is not a funciont, ListPlot3D does not work, so I produce a little sphere for each point, and plot those. ----- cubic ODE f[x_, r_, h_] := h + r x - x^3 Clear[NotComplexQ]; NotComplexQ[c_Complex] := False; NotComplexQ[c_] := True CartProd[l_] := Outer[List, l[[1]], l[[2]]] ArreglaLista[l_] := Select[Map[(x /. #) &, Flatten[l]], NotComplexQ] Arregla2[{l1_, l2_}] := Map[Join[l1, {#}] &, l2] kk = Flatten[ Map[Arregla2, Map[{#[[1]], ArreglaLista[Flatten[#[[2]]]]} &, Flatten[Table[{{r, h}, NSolve[f[x, r, h] == 0, x]}, {r, -3, 3, 0.1}, {h, -3, 3, 0.1}], 1]]], 1] makeSphere[l_] := Sphere[l, 0.03] spheres = Map[makeSphere, kk] Graphics3D[spheres]