lemniscate like bulbs from an Joukowski transform of an ellipse
- To: mathgroup at smc.vnet.net
- Subject: [mg102405] lemniscate like bulbs from an Joukowski transform of an ellipse
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Sat, 8 Aug 2009 04:38:09 -0400 (EDT)
The Joukowski transform is a fluid dynamic/ mechanics transform often associated with the aerodynamics of generalized cylinders ( wings). Using this transform I get a three part figure with two lemniscate type bulbs. Mathematica: Clear[x, y, z, z1, x1, y1, r] (* diaxial ellipse*) x = Cos[t]; y = Cos[t + 2*Pi/3]; (*Rotation matrix to get major ellipse axis on the x axis *) r = {{Cos[2*Pi/3 + Pi/12], Sin[2*Pi/3 + Pi/12]}, {-Sin[2*Pi/3 + Pi/ 12], \ Cos[2*Pi/3 + Pi/12]}}; g1 = ParametricPlot[r.{x, y}, {t, -Pi, Pi}, AspectRatio -> Automatic] {x1, y1} = r.{x, y}; z = x1 + I*y1; (* Joukowski transform without flow*) f[t_] := ComplexExpand[(z + 1/z)/2] (*angular division of the cosed figure into four parts*) g2top = ParametricPlot[{Re[f[t]], Im[f[t]]}, {t, -2*Pi/3 + Pi/ 12, -Pi/12}, PlotRange -> All, AspectRatio -> Automatic] g2bottom = ParametricPlot[{Re[f[t]], Im[f[t]]}, {t, 5*Pi/12, 2*Pi/3 + 3*Pi/ 12}, PlotRange -> All, AspectRatio -> Automatic] (* lemniscate type parts*) g2bulb1 = ParametricPlot[{Re[f[t]], Im[f[t]]}, {t, -Pi/12, 5*Pi/12}, PlotRange -> All, AspectRatio -> Automatic] g2bulb2 = ParametricPlot[{Re[f[t]], Im[f[t]]}, {t, 2*Pi/3 + 3*Pi/12, 2*Pi/3 + \ 3*Pi/12 + 6*Pi/12}, PlotRange -> All, AspectRatio -> Automatic] Show[{g1, g2top, g2bottom}] Show[{g1, g2bulb1, g2bulb2}, PlotRange -> All]