Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2009

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Symbolic integration

  • To: mathgroup at smc.vnet.net
  • Subject: [mg102631] Re: [mg102592] Symbolic integration
  • From: DrMajorBob <btreat1 at austin.rr.com>
  • Date: Mon, 17 Aug 2009 04:04:53 -0400 (EDT)
  • References: <200908161039.GAA01165@smc.vnet.net>
  • Reply-to: drmajorbob at bigfoot.com

The integral can't be computed:

Integrate[\[Nu] E[-0.5   Abs[
        z/ \[Lambda]]^\[Nu]]/(\[Lambda] 2^(1 + 1/\[Nu]) Gamma[
       1/\[Nu]]), z]

(2^(-1 - 1/\[Nu]) \[Nu] \[Integral]E[-0.5 Abs[
       z/\[Lambda]]^\[Nu]] \[DifferentialD]z)/(\[Lambda] Gamma[1/\[Nu]]
   )

Maybe you meant the first line to be

\[Lambda] = (2^(-2/\[Nu]) Gamma[1/\[Nu]]/  Gamma[3/\[Nu]])^(-1/2);

(parentheses for power, not brackets) and then the integral is still  
undefined:

Integrate[\[Nu] E[-0.5   Abs[
        z/ \[Lambda]]^\[Nu]]/(\[Lambda] 2^(1 + 1/\[Nu]) Gamma[
       1/\[Nu]]), z]

(2^(-1 - 1/\[Nu]) \[Nu] Sqrt[(2^(-2/\[Nu]) Gamma[1/\[Nu]])/
  Gamma[3/\[Nu]]] \[Integral]E[-0.5 2^(-\[Nu] Re[1/\[Nu]])
       Abs[z]^\[Nu] Abs[Gamma[1/\[Nu]]/Gamma[3/\[Nu]]]^(\[Nu]/
       2)] \[DifferentialD]z)/Gamma[1/\[Nu]]

But I doubt that's what you intended, either.

Bobby

On Sun, 16 Aug 2009 05:39:45 -0500, tzygmund <tzygmund at googlemail.com>  
wrote:

>
> Hi,
>
> I have a fairly simple question which I cannot solve. I want to assign
> a symbolic expression to a greek letter and then use this in a
> subsequent integral. So,
> ********************************
> \[Lambda] -> [
> \!\(\*SuperscriptBox["2",
> RowBox[{"[",
> FractionBox[
> RowBox[{"-", "2"}], "\[Nu]"], "]"}]]\) Gamma[1/\[Nu]]/
>    Gamma[3/\[Nu]]]^(-1/2)
>
> Integrate[\[Nu] E[-0.5   Abs[z/ \[Lambda]]^\[Nu]]/(\[Lambda] 2^(1 +
>      1/\[Nu]) Gamma[1/\[Nu]]), z]
> **********************************
>
> How can I get this to work?
>
> Thanks
>



-- 
DrMajorBob at bigfoot.com


  • Prev by Date: Re: Select text with keyboard?
  • Next by Date: Re: Matrices with square brackets
  • Previous by thread: Symbolic integration
  • Next by thread: Re: Symbolic integration