Re: Incongruence? hmm...
- To: mathgroup at smc.vnet.net
- Subject: [mg102760] Re: Incongruence? hmm...
- From: garrido at ruth.upc.edu
- Date: Wed, 26 Aug 2009 07:44:17 -0400 (EDT)
Hi Filippo, FourierCosCoefficient[ 1/720 (8 \[Pi]^4 - 60 \[Pi]^2 x^2 + 60 \[Pi] Abs[x]^3 - 15 x^4), x, m] 1/m^4 1/720 (8 \[Pi]^4 - 60 \[Pi]^2 x^2 + 60 \[Pi] Abs[x]^3 - 15 x^4) /. x -> Mod[x, 2 Pi] 1/720 (8 \[Pi]^4 + 60 \[Pi] Abs[Mod[x, 2 \[Pi]]]^3 - 60 \[Pi]^2 Mod[x, 2 \[Pi]]^2 - 15 Mod[x, 2 \[Pi]]^4) Plot[{Sum[Cos[m x]/m^4, {m, 1, \[Infinity]}], 1/720 (8 \[Pi]^4 + 60 \[Pi] Abs[Mod[x, 2 \[Pi]]]^3 - 60 \[Pi]^2 Mod[x, 2 \[Pi]]^2 - 15 Mod[x, 2 \[Pi]]^4)}, {x, -10, 10}]; Therefore, Sum[Cos[m x]/m^4, {m, 1, \[Infinity]}] = 1/720 (8 \[Pi]^4 + 60 \[Pi] Abs[Mod[x, 2 \[Pi]]]^3 - 60 \[Pi]^2 Mod[x, 2 \[Pi]]^2 - 15 Mod[x, 2 \[Pi]]^4) for everything x Real. Regards, J.L.Garrido -- Aquest missatge ha estat analitzat per MailScanner a la cerca de virus i d'altres continguts perillosos, i es considera que està net. For all your IT requirements visit: http://www.transtec.co.uk