Problem with a 1st order IV ODE (nonlinear)
- To: mathgroup at smc.vnet.net
- Subject: [mg102752] Problem with a 1st order IV ODE (nonlinear)
- From: garrido at ruth.upc.edu
- Date: Wed, 26 Aug 2009 07:42:50 -0400 (EDT)
Hi Virgil, h'[t] == -k + 1/((2 R - h[t]) h[t]) /. {h'[t] -> dh/dt, h[t] -> h} // Together dh/dt == (-1 - h^2 k + 2 h k R)/(h (h - 2 R)) If k = 1/R^2, dh/dt == (-1 - h^2 k + 2 h k R)/(h (h - 2 R)) /. k -> 1/R^2 // Together dh/dt == -((-h^2 + 2 h R - R^2)/(h R^2 (-h + 2 R))) Integrate[-((h R^2 (-h + 2 R))/(-h^2 + 2 h R - R^2)), h] // FullSimplify // Expand -h R^2 - R^4/(h - R) (I) General Solution : -h R^2 - R^4/(h - R) + cte == t VerifySolution : 1/D[-h R^2 - R^4/(h - R) + cte, h] + (-h^2 + 2 h R - R^2)/( h R^2 (-h + 2 R)) // FullSimplify 0 Solve[-h R^2 - R^4/(h - R) + cte == t, h] // FullSimplify {{h -> (cte + R^3 + Sqrt[(cte - 3 R^3 - t) (cte + R^3 - t)] - t)/( 2 R^2)}, {h -> ( cte + R^3 - Sqrt[(cte - 3 R^3 - t) (cte + R^3 - t)] - t)/(2 R^2)}} Particulars Solutions : Solve[-h R^2 - R^4/(h - R) + cte == t /. {t -> 0, h -> 0}, cte] {{cte -> -R^3}} -h R^2 - R^4/(h - R) + cte == t /. cte -> -R^3 // Together -((h^2 R^2)/(h - R)) == t Solve[(h^2 R^2)/(-h + R) == t, h] {{h -> (-t + Sqrt[t] Sqrt[4 R^3 + t])/( 2 R^2)}, {h -> -((t + Sqrt[t] Sqrt[4 R^3 + t])/(2 R^2))}} If k != 1/R^2, Integrate[(-h^2 + 2 h R)/(1 + h^2 k - 2 h k R), h] -(h/k) - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) Verify Solution : 1/D[-(h/k) - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) + cte, h] - (-k + 1/( h (-h + 2 R))) // FullSimplify 0 (II) General solution : -(h/k) - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) + cte == t Particular solution : Solve[-(h/k) - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) + cte == t /. {t -> 0, h -> 0}, cte] {{cte -> ArcTan[(Sqrt[k] R)/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2])}} -(h/k) - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) + cte /. cte -> ArcTan[(Sqrt[k] R)/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) // Together // FullSimplify -((h Sqrt[k] Sqrt[1 - k R^2] - ArcTan[(Sqrt[k] R)/Sqrt[1 - k R^2]] + ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]])/( k^(3/2) Sqrt[1 - k R^2])) Particular solution curve : { -((h Sqrt[k] Sqrt[1 - k R^2] - ArcTan[(Sqrt[k] R)/Sqrt[1 - k R^2]] + ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]])/( k^(3/2) Sqrt[1 - k R^2])), h} -(h/k) - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) + cte // Together (-h Sqrt[k] Sqrt[1 - k R^2] + cte k^(3/2) Sqrt[1 - k R^2] - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]])/(k^(3/2) Sqrt[1 - k R^2]) If in (II) -(h/k) - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]]/( k^(3/2) Sqrt[1 - k R^2]) + cte // Together (-h Sqrt[k] Sqrt[1 - k R^2] + cte k^(3/2) Sqrt[1 - k R^2] - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]])/(k^(3/2) Sqrt[1 - k R^2]), we do h -> 1/R^2 (Hôpital's rule) we obtain (I) (*III*)Limit[ D[-h Sqrt[k] Sqrt[1 - k R^2] + cte k^(3/2) Sqrt[1 - k R^2] - ArcTan[(Sqrt[k] (-h + R))/Sqrt[1 - k R^2]], k]/ D[k^(3/2) Sqrt[1 - k R^2], k], k -> 1/R^2, Direction -> -1] // FullSimplify cte + h^3 + h^2 R + R^3 + h^4/(-h + R) (*I*) -h R^2 - R^4/(h - R) + cte == cte + h^3 + h^2 R + R^3 + h^4/(-h + R )(*III*)// FullSimplify True Regards, J.L. Garrido -- Aquest missatge ha estat analitzat per MailScanner a la cerca de virus i d'altres continguts perillosos, i es considera que està net. For all your IT requirements visit: http://www.transtec.co.uk