Re: Infinite series
- To: mathgroup at smc.vnet.net
- Subject: [mg105698] Re: [mg105683] Infinite series
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Wed, 16 Dec 2009 06:16:20 -0500 (EST)
- References: <200912151227.HAA15202@smc.vnet.net>
Dr. C. S. Jog wrote: > Hi: > > We have the following identity: > > \sum_{m=1}^{infinity} (-1)^m/((2m-3)^2*(2m-1)*(2m+1)^2)=-Pi/32. > > When we type the command, > > In[1]:=Sum[(-1)^m/((2*m-3)^2*(2*m-1)*(2*m+1)^2),{m,Infinity}] > > we get > 2 1 1 > -16 Pi + 2 Pi - HurwitzZeta[2, -(-)] - Zeta[2, -] > 4 4 > Out[1]= -------------------------------------------------- > 512 > > > The command Simplify[%] does not simplify it further. > > I am sure the above expression must be equal to -Pi/32, but a user would > prefer this answer than the above one. > > Thanks and regards > > C. S. Jog FullSimplify and Limit agree with you. In[7]:= ss = Sum[(-1)^m/((2*m-3)^2*(2*m-1)*(2*m+1)^2),{m,Infinity}] Out[7]//InputForm= (-16*Pi + 2*Pi^2 - HurwitzZeta[2, -1/4] - Zeta[2, 5/4])/512 In[8]:= FullSimplify[ss] Out[8]//InputForm= -Pi/32 In[9]:= ssn = Sum[(-1)^m/((2*m-3)^2*(2*m-1)*(2*m+1)^2),{m,n}] Out[9]//InputForm= -(-4*(-1)^n - 4*(-1)^n*n + 16*(-1)^n*n^2 - 16*(-1)^n*n^3 + Pi - 8*n^2*Pi + 16*n^4*Pi + 2*(-1)^n*LerchPhi[-1, 1, 3/2 + n] - 16*(-1)^n*n^2*LerchPhi[-1, 1, 3/2 + n] + 32*(-1)^n*n^4*LerchPhi[-1, 1, 3/2 + n])/(32*(-1 + 4*n^2)^2) In[10]:= Limit[ss2, n->Infinity] Out[10]//InputForm= ss2 Daniel Lichtblau Wolfram Research
- References:
- Infinite series
- From: "Dr. C. S. Jog" <jogc@mecheng.iisc.ernet.in>
- Infinite series