Re: problems with parameter lumping using ReplaceAll
- To: mathgroup at smc.vnet.net
- Subject: [mg105887] Re: [mg105871] problems with parameter lumping using ReplaceAll
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 23 Dec 2009 02:42:15 -0500 (EST)
- Reply-to: hanlonr at cox.net
sol /. {V1 -> w + V2, V3 -> x + V4} // Simplify Bob Hanlon ---- sean <sean_incali at yahoo.com> wrote: ============= Hello Group, I have a pretty nasty expression that I'm trying the lump the parameters for. I'm having problems making mathematica perform the following replacement. Like I said it's pretty nasty and hope it pastes ok. sol = {{C[0]->p/(-4 a+4 b)+(Sqrt[l^2-m] vd)/(-4 a+4 b)-Sqrt[u-v-2 Sqrt [l^2-m] q vd-2 Sqrt[l^2-m] r vd]/(-4 a+4 b),M[0]->-(i/(2 V1-2 V2))-j/ (2 V1-2 V2)+Sqrt[s^2-4 t]/(2 V1-2 V2)+V1/(2 V1-2 V2)-V2/(2 V1-2 V2),X [0]->l/(2 V3-2 V4)+Sqrt[l^2-m]/(2 V3-2 V4)},{C[0]->p/(-4 a+4 b)+(Sqrt [l^2-m] vd)/(-4 a+4 b)-Sqrt[u-v-2 Sqrt[l^2-m] q vd-2 Sqrt[l^2-m] r vd]/ (-4 a+4 b),M[0]->i/(-2 V1+2 V2)+j/(-2 V1+2 V2)+Sqrt[s^2-4 t]/(-2 V1+2 V2)-V1/(-2 V1+2 V2)+V2/(-2 V1+2 V2),X[0]->l/(2 V3-2 V4)+Sqrt[l^2-m]/(2 V3-2 V4)},{C[0]->p/(-4 a+4 b)+(Sqrt[l^2-m] vd)/(-4 a+4 b)+Sqrt[u-v-2 Sqrt[l^2-m] q vd-2 Sqrt[l^2-m] r vd]/(-4 a+4 b),M[0]->-(i/(2 V1-2 V2))- j/(2 V1-2 V2)+Sqrt[s^2-4 t]/(2 V1-2 V2)+V1/(2 V1-2 V2)-V2/(2 V1-2 V2),X [0]->l/(2 V3-2 V4)+Sqrt[l^2-m]/(2 V3-2 V4)},{C[0]->p/(-4 a+4 b)+(Sqrt [l^2-m] vd)/(-4 a+4 b)+Sqrt[u-v-2 Sqrt[l^2-m] q vd-2 Sqrt[l^2-m] r vd]/ (-4 a+4 b),M[0]->i/(-2 V1+2 V2)+j/(-2 V1+2 V2)+Sqrt[s^2-4 t]/(-2 V1+2 V2)-V1/(-2 V1+2 V2)+V2/(-2 V1+2 V2),X[0]->l/(2 V3-2 V4)+Sqrt[l^2-m]/(2 V3-2 V4)},{C[0]->p/(-4 a+4 b)-(Sqrt[l^2-m] vd)/(-4 a+4 b)-Sqrt[u-v+2 Sqrt[l^2-m] q vd+2 Sqrt[l^2-m] r vd]/(-4 a+4 b),M[0]->-(i/(2 V1-2 V2))- j/(2 V1-2 V2)+Sqrt[s^2-4 t]/(2 V1-2 V2)+V1/(2 V1-2 V2)-V2/(2 V1-2 V2),X [0]->f/(-2 V3+2 V4)+g/(-2 V3+2 V4)+Sqrt[l^2-m]/(-2 V3+2 V4)-V3/(-2 V3+2 V4)+V4/(-2 V3+2 V4)},{C[0]->p/(-4 a+4 b)-(Sqrt[l^2-m] vd)/(-4 a+4 b)-Sqrt[u-v+2 Sqrt[l^2-m] q vd+2 Sqrt[l^2-m] r vd]/(-4 a+4 b),M[0]->i/ (-2 V1+2 V2)+j/(-2 V1+2 V2)+Sqrt[s^2-4 t]/(-2 V1+2 V2)-V1/(-2 V1+2 V2)+V2/(-2 V1+2 V2),X[0]->f/(-2 V3+2 V4)+g/(-2 V3+2 V4)+Sqrt[l^2-m]/ (-2 V3+2 V4)-V3/(-2 V3+2 V4)+V4/(-2 V3+2 V4)},{C[0]->p/(-4 a+4 b)-(Sqrt [l^2-m] vd)/(-4 a+4 b)+Sqrt[u-v+2 Sqrt[l^2-m] q vd+2 Sqrt[l^2-m] r vd]/ (-4 a+4 b),M[0]->-(i/(2 V1-2 V2))-j/(2 V1-2 V2)+Sqrt[s^2-4 t]/(2 V1-2 V2)+V1/(2 V1-2 V2)-V2/(2 V1-2 V2),X[0]->f/(-2 V3+2 V4)+g/(-2 V3+2 V4)+Sqrt[l^2-m]/(-2 V3+2 V4)-V3/(-2 V3+2 V4)+V4/(-2 V3+2 V4)},{C[0]->p/ (-4 a+4 b)-(Sqrt[l^2-m] vd)/(-4 a+4 b)+Sqrt[u-v+2 Sqrt[l^2-m] q vd+2 Sqrt[l^2-m] r vd]/(-4 a+4 b),M[0]->i/(-2 V1+2 V2)+j/(-2 V1+2 V2)+Sqrt [s^2-4 t]/(-2 V1+2 V2)-V1/(-2 V1+2 V2)+V2/(-2 V1+2 V2),X[0]->f/(-2 V3+2 V4)+g/(-2 V3+2 V4)+Sqrt[l^2-m]/(-2 V3+2 V4)-V3/(-2 V3+2 V4)+V4/ (-2 V3+2 V4)}} sol//. 2 V1-2 V2-> 2w/. 2 V3-2 V4 -> 2x//Simplify If you try it, 2 V1- 2 V2 is only replaced in every other denominator in the solutions. (There are 8 equilibrium points in the sol up there) It also fails to recognize that -V1 + V2 is -w. Similarly, 2 V3-2 V4 -> 2x fails to replace in some of the expressions. It seems like it has to do with - sign in front of the expression that mathematica is trying to make the replacements into. If the expression contains the - sign, it doesn't replace the expression. Question is how do I make the replacements regardless the sign? Thanks much in advance. Sean