Re: 3D Animations
- To: mathgroup at smc.vnet.net
- Subject: [mg105963] Re: 3D Animations
- From: Maxim <m.r at inbox.ru>
- Date: Mon, 28 Dec 2009 04:56:40 -0500 (EST)
- References: <hgq21f$g51$1@smc.vnet.net>
On Dec 22, 3:03 am, Artur <gra... at csl.pl> wrote: > Dear Mathematica Gurus, > I would like to ask that in version up 6 are available such 3D > animations like follwing (I'm mean about second part of this video):http://www.youtube.com/watch?v=JX3VmDgiFnY&feature=related > Merry Christmas > Artur Here's an animation example (where I take a conformal plot of sine for funzies): gr = ParametricPlot[{Re[Sin[t + I s]], Im[Sin[t + I s]]}, {t, 0, 2 Pi}, {s, 0, 10}, MaxRecursion -> 3, BoundaryStyle -> Green, Mesh -> 9, MeshStyle -> {Blue, Red}, MeshShading -> {{Red, Blue}, {Blue, Red}}]; Cases[gr, GraphicsComplex[L_, g_, ___] :> (pts = L; prims0 = Flatten /@ Last@Reap[ Cases[g, {___, c_RGBColor, s__} :> Sow[Cases[{s}, _Line, -1], c], -1], _, List]; prims = Flatten /@ Last@Reap[Cases[g, {___, c_RGBColor, s__} :> Sow[Cases[{s}, Polygon[p_, ___] :> Polygon@ Developer`ToPackedArray@Reverse[p, ArrayDepth@p], -1], c], -1], _, List];), -1]; Manipulate[ d = 4 R^2 + (pts[[All, 1]] - x0)^2 + (pts[[All, 2]] - y0)^2; pp = {x0 + 4 R^2 (pts[[All, 1]] - x0)/d, y0 + 4 R^2 (pts[[All, 2]] - y0)/d, 2 R - 8 R^3/d}; Graphics3D[ {If[c, {}, {Opacity[.25], Sphere[{x0, y0, R}, R]}], GraphicsComplex[Transpose@pp, If[c, {EdgeForm[], prims}, prims0], VertexNormals -> Transpose[pp - {x0, y0, R}]]}, Axes -> False, Boxed -> False, ViewAngle -> Pi/9], {{x0, 0}, -3, 3}, {{y0, 0}, -3, 3}, {{R, 1}, .5, 5}, {{c, False, "shading"}, {False, True}}, TrackedSymbols -> True] Maxim Rytin m.r at inbox.ru