Re: Re: a LOT of Mathematica bugs (some very old)
- To: mathgroup at smc.vnet.net
- Subject: [mg95079] Re: [mg95046] Re: a LOT of Mathematica bugs (some very old)
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 5 Jan 2009 03:29:58 -0500 (EST)
- Reply-to: hanlonr at cox.net
In your first example just increase the working precision Plot[2^-s LerchPhi[-1, s, 1/2], {s, -6.75, -7}, WorkingPrecision -> 20] Bob Hanlon On Sun, Jan 4, 2009 at 11:52 AM , Marcelo Surnamed wrote: > control error > Plot[2^-s LerchPhi[-1, s, 1/2], {s, -6.75, -7}] > > > Same expression not FullSimplify (ing) - not bug? > {E^(-(((1 + E) (E + E^(-(1 + E) \[Pi])))/E)), > E^((-1 - E) (1 + E^(-1 - (1 + E) \[Pi])))} // FullSimplify > > ********************************************** > Terrible Performance > > x = IE; > Timing[Do[x = x /. IE -> E^(IE/E), {12}]; x] > > {4.687, E^E^(-1 + > E^(-1 + E^(-1 + > E^(-1 + E^(-1 + > E^(-1 + E^(-1 + E^(-1 + E^(-1 + E^(-1 + E^(-1 + IE/E)))))))))))} > > mathematica 2.2 do it in a flash : > > x=IE; > Timing[Do[x=x/.IE->E^(IE/E),{12}];x] > > {0. Second, Power[E, Power[E, > > -1 + Power[E, -1 + Power[E, > > -1 + Power[E, -1 + Power[E, > > -1 + IE/E > -1 + E > -1 + E > -1 + E > -1 + E > -1 + E > -1 + E ]]]]]]} > > try this to hang the system > > x = IE; > Timing[Do[x = x /. IE -> E^(IE/E), {15}]; x] > > > > SparseArray > > ss = SparseArray[{i_, j_, 1} -> 1, {4, 4, 4}] > ss // MatrixForm > Map[Sin, ss] // MatrixForm (*Fails*) > ss // FullForm > Map[Sin, ss] // FullForm > > > > ******* > Mathematica eats a lot system memory when this sparseArray > is (eg 300 x 300 x300) - Is it needed/by design ? > > gg = SparseArray[{i_, j_, 1} -> 1, {300, 300, 300}]; > ********* > generated output does not mach the display > > ReplaceAll[ > Plus[Times[-1, Power[E, Times[1, Power[x, -1]]]], > Power[E, Plus[Times[1, Power[x, -1]], Power[x, Times[-1, x]]]]], > Rule[x, DirectedInfinity[-1]]] > > ******************* > Sum[(-x k)^k, {k, 0, Infinity}] > ******************* > Function tends to Log[2] > f[k2_] = N[-1 Sum[(1/k) (-1)^k, {k, 1, k2}]] // FullSimplify > > But this series diverges > NSum[ (-1)^k (f[k]/k), {k, 1, Infinity}] > > ********************** > version 6 (ok) - 7 results differs > > InverseLaplaceTransform[E^((1 - Sqrt[1 + 4*s])/2), s, t] > ****************