Re: MeijerG
- To: mathgroup at smc.vnet.net
- Subject: [mg95188] Re: [mg95159] MeijerG
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 9 Jan 2009 06:23:54 -0500 (EST)
- Reply-to: hanlonr at cox.net
Seems consistent with its series and plots f[c_, x_] := -Log[x^2] - Sqrt[Pi]* MeijerG[{{0}, {}}, {{0, 0}, {1/2}}, x^2/(4*c)]; Limit[f[c, x], x -> 0] Log[1/c] + 2*EulerGamma Series[f[c, x], {x, 0, 1}] // Normal // FullSimplify[#, Element[{c, x}, Reals]] & Piecewise[{{Log[1/c] + 2*EulerGamma, c != 0 && x >= 0}}, Log[1/c] - 2*I*Pi + 2*EulerGamma] func = Table[f[c, x], {c, 1/2, 3/2, 1/2}]; Plot[Tooltip[func], {x, 0, 1}, Epilog -> {Red, AbsolutePointSize[4], Point[Table[{0, Log[1/c] + 2*EulerGamma}, {c, 1/2, 3/2, 1/2}]]}, Frame -> True, Axes -> False] Bob Hanlon On Wed, Jan 7, 2009 at 6:56 AM , dimitris wrote: > Can I trust the following result? > > In[29]:= Limit[-Log[x^2] - > Sqrt[Pi]*MeijerG[{{0}, {}}, {{0, 0}, {1/2}}, x^2/(4*c)], x -> 0] > (*c>0*) > > Out[29]= 2*EulerGamma + Log[1/c] > > Another well known CAS gave > >> limit(-ln(x^2)-sqrt(Pi)*MeijerG([[0], []],[[0, 0], >> [1/2]],1/4*x^2/c),x = 0); > >> infinity > > > Regards > Dimitris