Re: Solving the Quintic: Correction to x^5 + 20 x + 32 == 0 root example
- To: mathgroup at smc.vnet.net
- Subject: [mg95490] Re: Solving the Quintic: Correction to x^5 + 20 x + 32 == 0 root example
- From: "Q.E.D." <aoe at netzero.net>
- Date: Tue, 20 Jan 2009 05:44:55 -0500 (EST)
- References: <gkn5j8$igv$1@smc.vnet.net>
> All of the roots are given by evaluating this: > > Module[{prim1, prim2, prim3, prim4, r1, r2, r3, r4}, > r1 = -(2500*5^(1/2) + 250* (50 - 10*5^(1/2))^(1/2) - > 750 *(50 + 10*5^(1/2))^(1/2))^(1/5); > r2 = (2500*5^(1/2) + 750 *(50 - 10*5^(1/2))^(1/2) + > 250 *(50 + 10*5^(1/2))^(1/2))^(1/5); > r3 = -(-2500*5^(1/2) + 750 *(50 - 10*5^(1/2))^(1/2) + > 250* (50 + 10*5^(1/2))^(1/2))^(1/5); > r4 = -(2500*5^(1/2) - 250* (50 - 10*5^(1/2))^(1/2) + > 750 *(50 + 10*5^(1/2))^(1/2))^(1/5); > prim1 = (-1 - 5^(1/2) + 2^(1/2)*I*(5 - 5^(1/2))^(1/2))/4; > prim2 = (-1 + 5^(1/2) - 2^(1/2)*I*(5 + 5^(1/2))^(1/2))/4; > prim3 = (-1 + 5^(1/2) + 2^(1/2)*I*(5 + 5^(1/2))^(1/2))/4; > prim4 = (-1 - 5^(1/2) - 2^(1/2)*I*(5 - 5^(1/2))^(1/2))/4; > {x -> #} & /@ ({{r1, r2, r3, r4}.{1, 1, 1, 1}, > {r1, r2, r3, r4}.{prim2, prim4, prim1, prim3}, > {r1, r2, r3, r4}.{prim3, prim1, prim4, prim2}, > {r1, r2, r3, r4}.{prim1, prim2, prim3, prim4}, > {r1, r2, r3, r4}.{prim4, prim3, prim2, prim1}}/5)] Further simplification is possible: 750 *(50 + 10*5^(1/2))^(1/2) - 250* (50 - 10*5^(1/2))^(1/2) -> 500*(125 - 10*5^(1/2))^(1/2) 750 *(50 - 10*5^(1/2))^(1/2) + 250 *(50 + 10*5^(1/2))^(1/2) -> 500*(125 + 10*5^(1/2))^(1/2) Also (5^(1/2))^5 can be factored out resulting in all of the roots given by evaluating this: Module[{prim1, prim2, prim3, prim4, r1, r2, r3, r4}, r1 = -5^(1/2)*(100 - 20*(25 - 2*5^(1/2))^(1/2))^(1/5); r2 = 5^(1/2)*(100 + 20*(25 + 2*5^(1/2))^(1/2))^(1/5); r3 = -5^(1/2)*(-100 + 20*(25 + 2*5^(1/2))^(1/2))^(1/5); r4 = -5^(1/2)*(100 + 20*(25 - 2*5^(1/2))^(1/2))^(1/5); prim1 = (-1 - 5^(1/2) + 2^(1/2)*I*(5 - 5^(1/2))^(1/2))/4; prim2 = (-1 + 5^(1/2) - 2^(1/2)*I*(5 + 5^(1/2))^(1/2))/4; prim3 = (-1 + 5^(1/2) + 2^(1/2)*I*(5 + 5^(1/2))^(1/2))/4; prim4 = (-1 - 5^(1/2) - 2^(1/2)*I*(5 - 5^(1/2))^(1/2))/4; {x -> #} & /@ ({{r1, r2, r3, r4}.{1, 1, 1, 1}, {r1, r2, r3, r4}.{prim2, prim4, prim1, prim3}, {r1, r2, r3, r4}.{prim3, prim1, prim4, prim2}, {r1, r2, r3, r4}.{prim1, prim2, prim3, prim4}, {r1, r2, r3, r4}.{prim4, prim3, prim2, prim1}}/5)] Q.E.D.