Re: Symbolic summation
- To: mathgroup at smc.vnet.net
- Subject: [mg101627] Re: [mg101561] Symbolic summation
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Fri, 10 Jul 2009 23:28:09 -0400 (EDT)
- References: <200907101044.GAA15502@smc.vnet.net>
- Reply-to: drmajorbob at bigfoot.com
I'd use something like n = 10; Array[x, n] {x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10]} If you prefer subscripts (I don't), you could use Array[Subscript[x, #] &, n] {Subscript[x, 1], Subscript[x, 2], Subscript[x, 3], Subscript[x, 4], \ Subscript[x, 5], Subscript[x, 6], Subscript[x, 7], Subscript[x, 8], \ Subscript[x, 9], Subscript[x, 10]} or Table[Subscript[x, i], {i, 1, n}] {Subscript[x, 1], Subscript[x, 2], Subscript[x, 3], Subscript[x, 4], \ Subscript[x, 5], Subscript[x, 6], Subscript[x, 7], Subscript[x, 8], \ Subscript[x, 9], Subscript[x, 10]} If you want a bit of both worlds, you can use "subFunction" as follows: subFunction[ a_Symbol] := (MakeExpression[SubscriptBox[ToString@a, i_], f_] := MakeExpression[RowBox[{ToString@a, "[", i, "]"}]]; MakeBoxes[a[i_], f_] := SubscriptBox[MakeBoxes[a, f], MakeBoxes[i, f]]) subFunction[x] n = 10; Array[x, n] {Subscript[x, 1], Subscript[x, 2], Subscript[x, 3], Subscript[x, 4], \ Subscript[x, 5], Subscript[x, 6], Subscript[x, 7], Subscript[x, 8], \ Subscript[x, 9], Subscript[x, 10]} and then, for instance, x[3] = 10 Array[x, n] 10 {Subscript[x, 1], Subscript[x, 2], 10, Subscript[x, 4], Subscript[x, \ 5], Subscript[x, 6], Subscript[x, 7], Subscript[x, 8], Subscript[x, \ 9], Subscript[x, 10]} or Clear[x] x[x_?EvenQ] := "Even" Array[x, n] {Subscript[x, 1], "Even", Subscript[x, 3], "Even", Subscript[x, 5], \ "Even", Subscript[x, 7], "Even", Subscript[x, 9], "Even"} subFunction[x] causes x[k] to display subscripted unless/until it takes on a value. Bobby On Fri, 10 Jul 2009 05:44:41 -0500, Luca <Lucazanottifragonara at alice.it> wrote: > Hello all, I have a problem, I've to compute a symbolic summation, which > takes a very long time if I have to do it by hand. I have to write the > terms of the Volterra series, related to the associated linear equation > of a system. > > The problem is that I'm not really confident with mathematica, I've > tried to use symbolic calculations with sums, but I think that in my > case is not so easy. > > The problem is that I want a solution of this form: > > x1+x2+x3+x4+x5... > > Where the 1, 2, 3 and 4 and 5 are the summation subscripts... > > My summation is not infinite, I have to stop it. > > If I write something like this: > > n = 3; > > Sum[kl, {l, 2, n}] > > I obtain 2kl, instead I want to obtain k2+k3. > > Is it possible with mathematica? > -- DrMajorBob at bigfoot.com
- References:
- Symbolic summation
- From: Luca <Lucazanottifragonara@alice.it>
- Symbolic summation