Re: Prony method for resonator loss calculations
- To: mathgroup at smc.vnet.net
- Subject: [mg102114] Re: [mg102067] Prony method for resonator loss calculations
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Thu, 30 Jul 2009 05:29:29 -0400 (EDT)
- References: <200907290905.FAA19088@smc.vnet.net>
- Reply-to: drmajorbob at bigfoot.com
After simplifying the code, I get the same results: Clear[f, v] ell = 0; c = 1; g = 1; m = 1; v[0][x_] = 1; v[n_][x_] := v[n][x] = I^(ell + 1)*c* NIntegrate[ y*BesselJ[ell, c*x*y] Exp[-I*(c*g)/2*(x^2 + y^2)] v[n - 1][y], {y, 0, 1}] Table[v[n][1], {n, 0, 20}] {1, 0.293281 + 0.321946 I, -0.0666037 + 0.180302 I, -0.0841789 + 0.0105136 I, -0.0212138 - 0.0308517 I, 0.00778189 - 0.0145778 I, 0.00729276 + 0.0000891848 I, 0.00144596 + 0.00287588 I, -0.000833329 + 0.00115061 I, -0.000620104 - 0.0000929016 I, -0.000089517 - 0.000261862 I, 0.0000844363 - 0.0000882536 I, 0.0000517295 + 0.0000151663 I, 4.56138*10^-6 + 0.0000233507 I, -8.22403*10^-6 + 6.52916*10^-6 I, -4.22856*10^-6 - 1.89685*10^-6 I, -1.15367*10^-7 - 2.04221*10^-6 I, 7.7684*10^-7 - 4.5991*10^-7 I, 3.37972*10^-7 + 2.11023*10^-7 I, -1.40621*10^-8 + 1.7529*10^-7 I, -7.15455*10^-8 + 3.00851*10^-8 I} Table[v[n][0], {n, 0, 20}] {1, 0.122417 + 0.479426 I, -0.163011 + 0.145326 I, -0.0900499 - 0.0343674 I, -0.0048187 - 0.0422661 I, 0.0155841 - 0.0104711 I, 0.00726782 + 0.00398051 I, -0.0000839751 + 0.0036563 I, -0.00144983 + 0.000709563 I, -0.000572462 - 0.000424047 I, 0.0000499212 - 0.000310436 I, 0.000131786 - 0.0000434767 I, 0.0000437982 + 0.0000428136 I, -7.88321*10^-6 + 0.0000258569 I, -0.0000117332 + 2.1615*10^-6 I, -3.22962*10^-6 - 4.15889*10^-6 I, 9.73893*10^-7 - 2.1101*10^-6 I, 1.02464*10^-6 - 4.68554*10^-8 I, 2.26429*10^-7 + 3.92003*10^-7 I, -1.07632*10^-7 + 1.68332*10^-7 I, -8.78196*10^-8 - 7.99464*10^-9 I} Bobby On Wed, 29 Jul 2009 04:05:04 -0500, gcarlson <gcarlson at xannah.org> wrote: > I am trying to compose a Mathematica notebook to implement the Prony > method as described by Siegman and Miller ("Unstable Optical Resonator > Loss Calculations Using the Prony Method." Applied Optics 9:2729-2736 > (1970)). > > I'm beginning by trying to duplicate the sample calculation in > Siegman's paper. I define a functional that I will use to create a > list of iterated vectors v. > > fcnl := Function[{x, f}, > I^(l+1)*c*NIntegrate[y*BesselJ[l, c*x*y] Exp[-I*(c*g)/2*(x^2 + > y^2)] f[y] , {y, 0, 1}]] > > I define some needed constants. > > l := 0 > c := 1 > g := 1 > M := 20 > > Then I create a module to create the list {Subscript[v,n]}. > > Module[{nmax = M}, > Subscript[v, 0][x_] = 1; > Do[Subscript[v, n + 1][x_] = fcnl[x, Subscript[v, n]], {n, 0, nmax}] > ] > > As a check, I evaluate the 20th iterated vector at the endpoints. > > Subscript[v, 20][1] > Subscript[v, 20][0] > > -7.15455*10^-8 + 3.00851*10^-8 I > > -8.78196*10^-8 - 7.99464*10^-9 I > > It appears that the iterated vectors quickly become very small. Does > this make sense? > > Is this approach doing what I want it to do? > > I would appreciate any assistance with or corrections to setting up > this problem. > > Thanks and regards, > > Glenn > > > -- DrMajorBob at bigfoot.com
- References:
- Prony method for resonator loss calculations
- From: gcarlson <gcarlson@xannah.org>
- Prony method for resonator loss calculations