Re: Integrate Bug
- To: mathgroup at smc.vnet.net
- Subject: [mg100439] Re: Integrate Bug
- From: Valeri Astanoff <astanoff at gmail.com>
- Date: Thu, 4 Jun 2009 03:31:39 -0400 (EDT)
- References: <gv2jh5$97b$1@smc.vnet.net>
On 21 mai, 05:58, Ney Lemke <ney.nle... at gmail.com> wrote: > I am trying to calculate this integral that should be positive.But the > answer is 0. > > In:Integrate[(1)/(z^2 + b^2 + a^2 - 2 z b Sin[\[Theta]] - > 2 a b Cos[\[Theta]])^(1/2), {\[Theta], 0, 2 \[Pi]}, > Assumptions -> {a > 0, b > 0, z > 0}] > > Out:0 > > Anybody have notice a situation like that? > > My platform is MacOSX 10.4 and Mathematica 7. > > Best wishes, Good day, A half-manual half-guessed tentative solution to get around the bug : In[1]:= f[a_, b_, z_, t_] = 1/Sqrt[a^2 + b^2 + z^2 - 2a*b*Cos[t] - 2b*z*Sin[t]]; In[2]:= F[a_, b_, z_] /; b < a || b < z := -((4 Sqrt[a^2 + b^2 + z^2 + 2b Sqrt[a^2 + z^2]]* Im[EllipticK[(a^4 + b^4 + 6b^2*z^2 + z^4 + 4b^3*Sqrt[a^2 + z^2] + 4b*z^2Sqrt[a^2 + z^2] + 2a^2*(3*b^2 + z^2 + 2b*Sqrt[a^2 + z^2]))/ (a^2 - b^2 + z^2)^2]])/(a^2 - b^2 + z^2)); F[a_, b_, z_] /; b > a && b > z := 4 Sqrt[a^2 + b^2 + z^2 + 2b Sqrt[a^2 + z^2]]* Im[EllipticK[(a^4 + b^4 + 6b^2 z^2 + z^4 + 4b^3*Sqrt[a^2 + z^2] + 4b*z^2Sqrt[a^2 + z^2] + 2a^2*(3*b^2 + z^2 + 2b*Sqrt[a^2 + z^2]))/ (a^2 - b^2 + z^2)^2]/(a^2 - b^2 + z^2)]; Numeric check : In[4]:= F[2, 3, 4] Out[4]= (-(4/11))*Sqrt[29 + 12Sqrt[5]]* Im[EllipticK[(1/121)*(1217 + 600 Sqrt[5] + 8*(43 + 12 Sqrt[5]))]] In[5]:= % // N Out[5]= 1.62239 In[6]:= NIntegrate[f[2, 3, 4, t], {t, 0, 2 Pi}] Out[6]= 1.62239 In[7]:= F[2, 5, 4] Out[7]= 4 Sqrt[45 + 20 Sqrt[5]]* Im[(-(1/5))* EllipticK[(1/25)*(3297 + 1640 Sqrt[5] + 8*(91 + 20 Sqrt[5]))]] In[8]:= % // N Out[8]= 1.80576 In[9]:= NIntegrate[f[2, 5, 4, t], {t, 0, 2 Pi}] Out[9]= 1.80576 -- V.Astanoff