Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2009

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: interpolation and to extract between 3D plots

  • To: mathgroup at smc.vnet.net
  • Subject: [mg101286] Re: interpolation and to extract between 3D plots
  • From: M <xrayspectrum at googlemail.com>
  • Date: Tue, 30 Jun 2009 06:32:24 -0400 (EDT)
  • References: <h24qv6$rlh$1@smc.vnet.net>

On Jun 27, 12:06 pm, Bob Hanlon <hanl... at cox.net> wrote:
> dtvalues = {{0.360374, 183.717, -659.}, {10.1899, 186.526, -659.}, {17.=
562,
>     193.898, -659.}, {20.0194, 203.376, -659.}, {17.562,
>     213.206, -659.}, {10.1899, 220.578, -659.}, {0.360374,
>     223.386, -659.}, {-9.46912, 220.578, -659.}, {-16.8412,
>     213.206, -659.}, {-19.2986, 203.376, -659.}, {-16.8412,
>     193.898, -659.}, {-9.46912, 186.526, -659.}, {0.360374,
>     183.717, -660.5}, {10.1899, 186.526, -660.5}, {17.562,
>     193.898, -660.5}, {20.0194, 203.376, -660.5}, {17.562,
>     213.206, -660.5}, {10.1899, 220.578, -660.5}, {0.360374,
>     223.386, -660.5}, {-9.46912, 220.578, -660.5}, {-16.8412,
>     213.206, -660.5}, {-19.2986, 203.376, -660.5}, {-16.8412,
>     193.898, -660.5}, {-9.46912, 186.526, -660.5}, {0.360374,
>     183.717, -662.}, {10.1899, 186.526, -662.}, {17.562,
>     193.898, -662.}, {20.0194, 203.376, -662.}, {17.562,
>     213.206, -662.}, {10.1899, 220.578, -662.}, {0.360374,
>     223.386, -662.}, {-9.46912, 220.578, -662.}, {-16.8412,
>     213.206, -662.}, {-19.2986, 203.376, -662.}, {-16.8412,
>     193.898, -662.}, {-9.46912, 186.526, -662.}};
>
> To separate by z-values
>
> sbz = SplitBy[dtvalues, #[[3]] &];
>
> allZ = Union[dtvalues[[All, 3]]];
>
> Reverse[sbz] ==
>  (Cases[dtvalues, {__, #}] & /@ allZ)
>
> True
>
> Graphics3D[Line /@ sbz,
>  Axes -> True,
>  BoxRatios -> {1, 1, .5}]
>
> To close each of the rings
>
> Graphics3D[Line /@
>   (Append[#, First[#]] & /@ sbz),
>  Axes -> True,
>  BoxRatios -> {1, 1, .5}]
>
> To add additional rings
>
> pts = Append[pts = Cases[dtvalues,
>      {x_, y_, dtvalues[[1, 3]]} :> {x, y, z}],
>    First[pts]];
>
> multiRing = Table[pts,
>    {z, Min[allZ], Max[allZ],
>     (Max[allZ] - Min[allZ])/20}];
>
> Graphics3D[Line /@ multiRing,
>  Axes -> True,
>  BoxRatios -> {1, 1, .5}]
>
> Bob Hanlon
>
> ---- M <xrayspect... at googlemail.com> wrote:
>
> =============
> Hi All,
>
> I have the following data in the form {x,y,z} ;
>
> dtvalues= {{0.360374, 183.717, -659.}, {10.1899, 186.526, -659.},
> {17.562, 193.898, -659.}, {20.0194, 203.376, -659.}, {17.562, 213.206,
> -659.}, {10.1899, 220.578, -659.}, {0.360374, 223.386, -659.},
> {-9.46912, 220.578, -659.}, {-16.8412, 213.206, -659.}, {-19.2986,
> 203.376, -659.}, {-16.8412, 193.898, -659.}, {-9.46912, 186.526,
> -659.}, {0.360374, 183.717, -660.5}, {10.1899, 186.526, -660.5},
> {17.562, 193.898, -660.5}, {20.0194, 203.376, -660.5}, {17.562,
> 213.206, -660.5}, {10.1899, 220.578, -660.5}, {0.360374, 223.386,
> -660.5}, {-9.46912, 220.578, -660.5}, {-16.8412, 213.206, -660.5},
> {-19.2986, 203.376, -660.5}, {-16.8412, 193.898, -660.5}, {-9.46912,
> 186.526, -660.5}, {0.360374, 183.717, -662.}, {10.1899, 186.526,
> -662.}, {17.562, 193.898, -662.}, {20.0194, 203.376, -662.}, {17.562,
> 213.206, -662.}, {10.1899, 220.578, -662.}, {0.360374, 223.386,
> -662.}, {-9.46912, 220.578, -662.}, {-16.8412, 213.206, -662.},
> {-19.2986, 203.376, -662.}, {-16.8412, 193.898, -662.}, {-9.46912,
> 186.526, -662.}};
>
> Two questions
> 1.) How to build a 3D volume for visualization for this data.
> 2.) Is it possible to extract the data at various z values like {z =
> -659.095, -660, eetc.}
>
> Thank you for your help !!!!

Thank you so much for the reply.
thats a creative solution.
It works to certain extend however i will complete it

thanks again.



  • Prev by Date: Re: Wolfram | Alpha: Acres per square mile? (oddities)
  • Next by Date: Re: Re: Wolfram | Alpha: Acres per square mile? (oddities)
  • Previous by thread: Re: interpolation and to extract between 3D plots
  • Next by thread: Eigenvalue bug in Mathematica 7.0.0