ToNumberField isn't perfect
- To: mathgroup at smc.vnet.net
- Subject: [mg97495] ToNumberField isn't perfect
- From: Scott Morrison <scott.morrison at gmail.com>
- Date: Sat, 14 Mar 2009 05:39:28 -0500 (EST)
I'm seeing a problem with ToNumberField sometimes claiming that a number isn't in a number field, when it actually is. In particular, try d=Root[-5+17 #1^2-8 #1^4+#1^6&,6]; z=Sqrt[2-d^2]; f=Root[-5+413 #1-2156 #1^2+#1^3&,2,0]; now ToNumberField[f, z] fails, but ToNumberField[d^2 f,z]/ToNumberField [d^2,z] (which gives the same answer) succeeds. A mathematica session follows. Scott Morrison In[295]:= \[Delta]=Root[-5+17 #1^2-8 #1^4+#1^6&,6] Out[295]= Root[-5+17 #1^2-8 #1^4+#1^6&,6] In[296]:= z=RootReduce[Sqrt[2-\[Delta]^2]] Out[296]= Root[-5-3 #1^2+2 #1^4+#1^6&,4] In[297]:= f=((1-7 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2+2 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^4) \[Sqrt](3-11 Root[-5+17 #1^2-8 #1^4+#1^6&,6] ^2+3 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^4) (4-11 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2+3 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^4) Root[-5+13179 #1^2+28316 #1^4+#1^6&,2])/((-2+Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2) ((-1- Root[-5+17 #1^2-8 #1^4+#1^6&,6]+Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2) (-1+Root[-5+17 #1^2-8 #1^4+#1^6&,6]+Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2)) ^(3/2)); In[298]:= ToNumberField[f,z] During evaluation of In[298]:= ToNumberField::nnfel: ((1-7 Root[-5+17 Power[<<2>>]-8 Power[<<2>>]+Slot[<<1>>]^6&,6,0]^2+2 Root[-5+17 Power [<<2>>]-8 Power[<<2>>]+Slot[<<1>>]^6&,6,0]^4) Sqrt[3-11 Root[-5+Times [<<2>>]+Times[<<1>>]+Power[<<2>>]&,6,0]^2+3 Root[-5+Times[<<2>>]+Times [<<2>>]+Power[<<2>>]&,6,0]^4] (4-11 Root[<<1>>&,6,0]^2+3 <<1>>^4) Root [-5+13179 #1^2+28316 #1^4+#1^6&,2,0])/((-2+Root[-5+17 Power[<<2>>]-8 Power[<<2>>]+Slot[<<1>>]^6&,6,0]^2) ((-1-Root[-5+Times[<<2>>]+Times [<<2>>]+Power[<<2>>]&,6,0]+Root[-5+Times[<<2>>]+Times[<<2>>]+Power [<<2>>]&,6,0]^2) (-1+Root[<<1>>]+<<1>>^2))^(3/2)) does not belong to the algebraic number field generated by Root[-5-3 #1^2+2 #1^4+#1^6&, 4,0]. >> Out[298]= ToNumberField[((1-7 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2+2 Root [-5+17 #1^2-8 #1^4+#1^6&,6]^4) Sqrt[3-11 Root[-5+17 #1^2-8 #1^4+#1^6&, 6]^2+3 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^4] (4-11 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2+3 Root[-5+17 #1^2-8 #1^4+#1^6&,6]^4) Root[-5+13179 #1^2+28316 #1^4+#1^6&,2])/((-2+Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2) ((-1- Root[-5+17 #1^2-8 #1^4+#1^6&,6]+Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2) (-1+Root[-5+17 #1^2-8 #1^4+#1^6&,6]+Root[-5+17 #1^2-8 #1^4+#1^6&,6]^2)) ^(3/2)),Root[-5-3 #1^2+2 #1^4+#1^6&,4]] In[299]:= ToNumberField[RootReduce[f],z] During evaluation of In[299]:= ToNumberField::nnfel: Root[-5+413 #1-2156 #1^2+#1^3&,2,0] does not belong to the algebraic number field generated by Root[-5-3 #1^2+2 #1^4+#1^6&,4,0]. >> Out[299]= ToNumberField[Root[-5+413 #1-2156 #1^2+#1^3&,2],Root[-5-3 #1^2+2 #1^4+#1^6&,4]] In[300]:= ToNumberField[f \[Delta]^2,z]/ToNumberField[\[Delta]^2,z] Out[300]= AlgebraicNumber[Root[-5-3 #1^2+2 #1^4+#1^6&,4], {554,0,668,0,183,0}] In[301]:= N[ToNumberField[f \[Delta]^2,z]/ToNumberField[\[Delta]^2,z]- f] Out[301]= 1.68199*10^-14