Re: Problems with absolute PlotRange
- To: mathgroup at smc.vnet.net
- Subject: [mg104641] Re: [mg104562] Problems with absolute PlotRange
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Thu, 5 Nov 2009 03:52:49 -0500 (EST)
- References: <200911040633.BAA08523@smc.vnet.net>
- Reply-to: drmajorbob at yahoo.com
It appears that's the very picture of a broken PlotRange (and AbsoluteOptions thereof). Bobby On Wed, 04 Nov 2009 00:33:03 -0600, Harrie Kraai <hakraai at xs4all.nl> wrote: > Hi, I met three problems with determining the absolute PlotRange for a > Graphic > > ************************************************************************ > PROBLEM 1: plotrange for point sets > > --> > tab = Table[{RandomReal[0.5], RandomReal[{0.2, 0.4}]}, {10}]; > lp = ListPlot[tab]; > AbsoluteOptions[lp, PlotRange] > <-- > > output: {PlotRange -> {{0., 1.}, {0., 1.}}}, which is some sort of > default > > --> > lp2 = ListPlot[tab, Joined -> True]; > AbsoluteOptions[lp2, PlotRange] > <-- > > out: {PlotRange -> {{0.0371531, 0.369901}, {0.204445, 0.362556}}}, which > depends on random points of course, but is correct in my case > > exactly the same thing happens using Graphics[Point[tab]] versus > Graphics[Line[tab]] > > Why doesn't Mathematica report the absolute plotrange? After all, it has > determined one to be able to plot in the first place... > > ************************************************************************* > > PROBLEM 2: explicite PlotRange, short notation (tab defined above) > > --> > gr = Graphics[Line[tab], PlotRange -> 0.5]; (*Use explicit plotrange, > shorthand notation*) > AbsoluteOptions[gr, PlotRange] > <-- > > produces an error message "PlotRange::prng", obviously it does not > recognize the (new?) style of PlotRange setting, while the graphics plot > ok. > > > ************************************************************************ > > PROBLEM 3: after geometric transformation (tab defined above) > > --> > gr2 = Graphics@ > GeometricTransformation[Line[tab], {{{1, 0}, {0, 1}}, {0, 0}}]; > (* Essentially an identity transformation *) > AbsoluteOptions[gr2, PlotRange] > <-- > > output: {PlotRange -> {{0., 1.}, {0., 1.}}}, after > GeometricTransformation the PlotRange is lost.... > > > ************************************************************************ > > Apparently the reported PlotRange for AbsoluteOptions has a number of > problems, or am I missing a point here? > > HK > -- DrMajorBob at yahoo.com
- References:
- Problems with absolute PlotRange
- From: Harrie Kraai <hakraai@xs4all.nl>
- Problems with absolute PlotRange