Re: Characteristic Function of Pareto distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg104660] Re: Characteristic Function of Pareto distribution
- From: fd <fdimer at gmail.com>
- Date: Fri, 6 Nov 2009 05:15:57 -0500 (EST)
- References: <hconpj$1kn$1@smc.vnet.net> <hcr9ui$9nb$1@smc.vnet.net>
On Nov 4, 6:19 pm, sashap <pav... at gmail.com> wrote: > On Nov 3, 1:57 am, fd <fdi... at gmail.com> wrote: > > > > > All > > > I'm computing the Characteristic function of a Pareto distribution > > with Mathematica, but I'm trying to make sense of the answers. > > > If I define > > > P=ParetoDistribution[1,3] > > > In[164]:= PDF[P][x] > > > Out[164]= 3/x^4 > > > Then, I try > > > In[165]:= CharacteristicFunction[P, t] > > > During evaluation of In[165]:= \[Infinity]::indet: Indeterminate > > expression 0 (t^2)^(3/2) ComplexInfinity encountered. >> > > > Out[165]= Indeterminate > > > If I try calculating the Fourier transform I get > > > In[166]:= FourierTransform[PDF[P][x], x, \[Omega], FourierParameters > - > > > > {1, 1}] > > > Out[166]= 1/2 \[Pi] \[Omega]^3 Sign[\[Omega]] > > > I have some limited understanding of what's going on. In the first > > case the the integration does not include the origin, while with the > > Fourier transform it makes the integration around the origin and > > Mathematica uses the Cauchy integral, thus the result it shows, does > > that make sense? > > > What seems a problem to me appears if I do not define values for the > > parameters in the Pareto distribution, I get a rather strange answer > > > P=ParetoDistribution[xm,alpha] > > > In[170]:= CharacteristicFunction[P, t] > > > Out[170]= > > alpha (t^2)^(alpha/2) xm^alpha Cos[(alpha \[Pi])/2] Gamma[-alpha] + > > HypergeometricPFQ[{-(alpha/2)}, {1/2, > > 1 - alpha/2}, -(1/4) t^2 xm^2] - ( > > I alpha Sqrt[t^2] > > xm HypergeometricPFQ[{1/2 - alpha/2}, {3/2, > > 3/2 - alpha/2}, -(1/4) t^2 xm^2] Sign[t])/(1 - alpha) + > > I (t^2)^(alpha/2) xm^ > > alpha Gamma[1 - alpha] Sign[t] Sin[(alpha \[Pi])/2] > > > The expression I find in reference textbooks don't involve > > Hypergoemetric function of any sort, and is much simpler > > > alpha (-I xm \[Omega])^alpha Gamma[alpha, I xm \[Omega]] > > > Can anyone please help me understanding this? > > An expression used by Mathematica for characteristic > function of Pareto distribution has removable singularities > for integer values of alpha. > > The unexpanded form involves MeijerG function: > > alpha /2 1/Sqrt[Pi] > MeijerG[{{}, {1 + alpha/2}}, {{1/2, 0, alpha/2}, {}}, -I ( > k t)/2, 1/2] > > For alpha == 3 and k ==1: > > In[31]:= With[{alpha = 3, k = 1}, alpha/2 1/Sqrt[Pi] > MeijerG[{{}, {1 + alpha/2}}, {{1/2, 0, alpha/2}, {}}, -I (k t)/2, > 1/2]] // FunctionExpand // Simplify > > Out[31]= 1/4 (4 Cos[t] + 2 I t Cos[t] - 2 t^2 Cos[t] + > 2 I t^3 CosIntegral[t] + I t^3 Log[4] + 2 I t^3 Log[-((I t)/2)] - > 2 I t^3 Log[t] + 4 I Sin[t] - 2 t Sin[t] - 2 I t^2 Sin[t] - > 2 t^3 SinIntegral[t]) > > Compare with direct integration: > > In[32]:= Integrate[ > Exp[I t x] PDF[ParetoDistribution[1, 3], x], {x, 1, Infinity}, > Assumptions -> Im[t] == 0] > > Out[32]= 1/4 (4 E^(I t) + 2 I E^(I t) t - 2 E^(I t) t^2 + \[Pi] t^3 + > 2 I t^3 CosIntegral[t] - 2 t^3 SinIntegral[t]) > > In[33]:= % - %% // FullSimplify[#, t \[Element] Reals] & > > Out[33]= 0 > > Oleksandr Pavlyk > Wolfram Research > > > > > Thanks in advance. Thanks for your answer. Got it now. I did a few other experiments on this matter and I still don't quite agree with Mathematica not returning a CharactheristicFunction [ParetoDistribution[1,3],t] that is not usable. It surely returns an expression for c2 = CharacteristicFunction[ParetoDistribution[k, \[Alpha]], t] which for a definite \[Alpha] is the same as the integration from k to infinity c1 = Integrate[ Exp[I t x] PDF[ParetoDistribution[k, \[Alpha]], x], {x, k, Infinity}, Assumptions -> {Im[t] == 0, Im[\[Alpha]] == 0, Re[\[Alpha]] > -1, Re[k] > 0, Im[k] == 0, \[Alpha] \[Element] Integers}] cc = Simplify[c1 - c2, Assumptions -> {Im[\[Alpha]] == 0, Im[t] == 0, Re[\[Alpha]] > 1, Re[k] > 0, Im[k] == 0, t < 0}] (**t assumed < 0 to eliminate t-Abs [t]t**) Out[129]= I (-k t)^\[Alpha] (Gamma[ 1 - \[Alpha]] + \[Alpha] Gamma[-\[Alpha]]) Sin[(\[Pi] \[Alpha])/2] Limit[cc /. k -> 1, \[Alpha] -> 3] Out[130]= 0 But it would be more useful if Mathematica returned an usable expression whether alpha is defined or a symbol ca[k_, \[Alpha]_] := Integrate[ Exp[I t x] PDF[ParetoDistribution[k, \[Alpha]], x], {x, k, Infinity}, Assumptions -> {Im[t] == 0, Im[\[Alpha]] == 0, Re[\[Alpha]] > -1, Re[k] > 0, Im[k] == 0, \[Alpha] \[Element] Integers}] In[121]:= ca[1, 3] Out[121]= 1/4 (-2 E^(I t) (-2 + t (-I + t)) + t^3 (\[Pi] + 2 I CosIntegral[t] - 2 SinIntegral[t])) Thanks