Re: Beta Cube - Wolfram Demonstrations Project
- To: mathgroup at smc.vnet.net
- Subject: [mg105148] Re: Beta Cube - Wolfram Demonstrations Project
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Sun, 22 Nov 2009 06:10:58 -0500 (EST)
- References: <he5voj$3or$1@smc.vnet.net>
On Nov 20, 3:49=C2 am, Roger Bagula <rlbag... at sbcglobal.net> wrote: > They changed the page:http://demonstrations.wolfram.com/BetaCube/ > > * Contributed by: Michael Trott > * Suggested by: Stephen Wolfram > * Based on work by: Roger Bagula > > Respectfully, Roger L. Bagula > 11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :http://www= .google.com/profiles/Roger.Bagula > alternative email: roger.bag... at gmail.com Here is a new 3d based on a Fermat -Euleian matrix approach I developed this morning: Clear[t, T, M, F] (* Euerian numbers*) t[n_, k_] = Sum[(-1)^j Binomial[n, j](k + 1 - j)^(n - 1), {j, 0, k}] (* Fermat version of Eulerian numbers times their transpose*) T[n_, k_] := If[n =E2=89=A5 k, t[n + 2, k], 0]*If[n <= k, 0, t[n + 2, k= ]] (*multinomial like 3d Cuboid*) gr = Flatten[Table[If[Mod[T[x, y]*T[y, z], 2] == 1, {EdgeForm[], Cuboid[1.2{x, y, -z}]}, {}], {x, 0, 31}, {y, 0, 31}, {z, 0, 31}]]; gr = Show[Graphics3D[gr], Boxed -> False] Show[gr, ViewPoint -> {-0.783, 0.759, 3.203}] Here is the sequence I submitted based on this type of matrix: %I A168242 %S A168242 1,1,1,1,3,1,1,29,21,1,1,1769,1872,265,1,1,615871,1227274, %T A168242 405530,5975,1,1,1124878187,14488841796,8196098025,250869024, %U A168242 194883,1,1,10146337387971,4127467195814962,2684293284374908 %V A168242 1,1,-1,1,-3,1,1,-29,21,-1,1,-1769,1872,-265,1,1,-615871,1227274, %W A168242 -405530,5975,-1,1,-1124878187,14488841796,-8196098025,250869024, %X A168242 -194883,1,1,-10146337387971,4127467195814962,-2684293284374908 %N A168242 Coefficient triangle sequence of characteristic polynomials of a Fermat like matrix:M(n)=Eulerian nth matrix: F(n)=M(n).Transpose[M (n)]] %C A168242 Row Sums are: %C A168242 {1, 0, -1, -8, -160, 211848,5418539727, 1568832578459224, 5586114023994799591396, %C A168242 -416657044755533539390036118560, -14128568453639379750002082917435886133265, -6849588404991830798534151932598866046674668061916984...}. %C A168242 Example matrix F(3); %C A168242 {{3, 5, 1}, %C A168242 {5, 17, 4}, %C A168242 {1, 4, 1}} %D A168242 L. Comtet, Advanced Combinatorics, Reidel, Holland, 1978, page 172 %e A168242 {1}, %e A168242 {1, -1}, %e A168242 {1, -3, 1}, %e A168242 {1, -29, 21, -1}, %e A168242 {1, -1769, 1872, -265, 1}, %e A168242 {1, -615871, 1227274, -405530, 5975, -1}, %e A168242 {1, -1124878187, 14488841796, -8196098025, 250869024, -194883, 1}, %e A168242 {1, -10146337387971, 4127467195814962, -2684293284374908, 136124480159052, -319484649614, 8897703, -1}, %e A168242 {1, -428247824076704947, 17914574195515702665641, -13896536495233638792866, 1577809812703562226910, -9306019885601872094, 778719385854493, -533785743, 1}, %e A168242 {1, -81122352002183205692001, 1013200645627301010738899491371, -2171326301305554075331374889621, 748623927505727977255573077308, -7156540983035789703544116336, 1305525584958241674283545, -3205618448985143519, 40926870693, -1}, %e A168242 {1, -66885549293275814462767924797, 700501791981375381769184102256200146631, -28023249349569184787979186261051800365390, 13350702011670792795258543143392523163311, -156586293448931879782269330892154553133, 63386232099122631948920609947972715, -438644853880761289559728814794, 21273733616165855220783, -3893960978593, 1}, %e A168242 {1, -234732980513118576078558469331193281, 5621271025686372941421637129418789177249005788203, -13305553109795291932551487280535074672188567064406267, 6564379514567042192853283682636347534279562461093950, -114178043014292921637849211194413456481495109216258, 141964308173916470071468540296775755854414852854, -2083148469963100139599682004755602288051786, 278086488638019757478602360279335075, -214476940412956125417947983, 450564987828509, -1} %t A168242 Clear[t, T, M, F]; %t A168242 t[n_, k_] = Sum[(-1)^j Binomial[n, j](k + 1 - j)^(n - 1), {j, 0, k}]; %t A168242 T[n_, k_] := If[n >= m, t[n + 2, k], 0]; %t A168242 M[n_] := Table[T[m, k], {k, 0, n}, {m, 0, n}]; %t A168242 F[n_] := M[n].Transpose[M[n]]; %t A168242 Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[F [n], x], x], {n, 0, 10}]]; %t A168242 Flatten[%] %K A168242 sign %O A168242 0,5 %A A168242 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 21 2009