ML estimators for Box-Cox Extreme Value distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg105180] ML estimators for Box-Cox Extreme Value distribution
- From: Petri Tötterman <petri.totterman at hanken.fi>
- Date: Mon, 23 Nov 2009 06:53:58 -0500 (EST)
Dear all, I have a set of data, and I want to fit a distribution on this data. I am particularily interested in the Box-Cox General Extreme Value distribution, for which I have the CDF and PDF: --- BoxCoxGEVDistribution /: CDF[BoxCoxGEVDistribution[\[Mu]_, \[Sigma]_, \[Xi]_, \[Phi]_], x_] := 1 + (((Exp[-(1 + \[Xi] ( (x - \ \[Mu])/\[Sigma]))^(-1/\[Xi])])^\[Phi]) - 1)/\[Phi]; BoxCoxGEVDistribution /: PDF[BoxCoxGEVDistribution[\[Mu]_, \[Sigma]_, \[Xi]_, \[Phi]_], x_] = D[CDF[BoxCoxGEVDistribution[\[Mu], \[Sigma], \[Xi], \[Phi]], x], x]; --- I do also have a Log likelihood function from (Bali, 2007): --- LLdBoxCoxGEV[\[Mu]_, \[Sigma]_, \[Xi]_, \[Phi]_, M_] := Module[{k = Length[M]}, -k Log[\[Sigma]] - k ((1 + \[Xi])/\[Xi]) Sum[ Log[1 + \[Xi] ((M[[i]] - \[Mu])/\[Sigma])], {i, 1, k}] - k \[Phi] Sum[(1 + \[Xi] ((M[[i]] - \[Mu])/\[Sigma]))^(-( 1/\[Xi])), {i, 1, k}] ]; --- Obviously, \[Mu]_, \[Sigma]_, \[Xi]_, \[Phi]_ are parameters which I need to estimate, and M is a list of values from the dataset, exceeding a predefined limit. I would be grateful for advice, how should I continue to find the Maximum Likelihood estimators for this distribution, using Mathematica? Best regards, /petri