Re: Re: Re: Re: generating
- To: mathgroup at smc.vnet.net
- Subject: [mg103883] Re: [mg103861] Re: [mg103827] Re: [mg103806] Re: generating
- From: Leonid Shifrin <lshifr at gmail.com>
- Date: Sat, 10 Oct 2009 07:10:29 -0400 (EDT)
- References: <ha4r9k$d0h$1@smc.vnet.net> <200910071101.HAA00387@smc.vnet.net>
I've made a few more optimizations: Clear[subMultiSetsNew]; subMultiSetsNew[s_, k_] := Partition[s[[Flatten[#]]], k] &@ Transpose[ Transpose[Subsets[Range[Length[s] + k - 1], {k}]] - Range[0, k - 1]]; Clear[coinSetsNew]; coinSetsNew[s_, k_] := Flatten[Table[subMultiSetsNew[s, i], {i, k}], 1]; Now (coinSets is David's "accumulator" version): In[1]:= (res1=coinSets[Range[15],7])//Length//Timing Out[1]= {2.333,170543} In[2]:= (res2 = coinSetsNew[Range[15],7])//Length//Timing Out[2]= {0.37,170543} In[3]:= res1==res2 Out[3]= True Regards, Leonid On Fri, Oct 9, 2009 at 4:18 AM, David Bevan <david.bevan at pb.com> wrote: > > ... and using Subsets[set, {k}] is much faster than KSubsets[set, k] > > > > -----Original Message----- > > From: DrMajorBob [mailto:btreat1 at austin.rr.com] > > Sent: 8 October 2009 17:05 > > To: David Bevan; mathgroup at smc.vnet.net > > Cc: bayard.webb at gmail.com > > Subject: Re: [mg103827] Re: [mg103806] Re: generating submultisets with > > repeated elements > > > > g is an improvement over f, I think: > > > > << "Combinatorica`"; > > > > Clear[f, g, test1, test2] > > f[set_] := Table[set[[i]] - (i - 1), {i, Length[set]}] > > g[set_] := set - Range[0, Length@set - 1] > > test1[n_, k_] := With[{set = Range[n + k - 1]}, > > f /@ KSubsets[set, k]] > > test2[n_, k_] := With[{set = Range[n + k - 1]}, > > g /@ KSubsets[set, k]] > > > > n = 15; k = 10; > > Timing@Length@test1[n, k] > > Timing@Length@test2[n, k] > > Binomial[n + k - 1, k] > > > > {32.9105, 1961256} > > > > {16.3832, 1961256} > > > > 1961256 > > > > Bobby > > > > On Thu, 08 Oct 2009 06:50:51 -0500, David Bevan <david.bevan at pb.com> > > wrote: > > > > > That's an interesting bijection I wasn't aware of. Thanks. > > > > > > David %^> > > > > > >> -----Original Message----- > > >> From: monochrome [mailto:bayard.webb at gmail.com] > > >> Sent: 7 October 2009 12:02 > > >> To: mathgroup at smc.vnet.net > > >> Subject: [mg103806] Re: generating submultisets with repeated elements > > >> > > >> I did a little research and found out that there are Choose(n+k-1, k) > > >> multisets of size k from a set of size n. This made me think that > > >> there should be a mapping from the k-subsets of n+k-1 to the k- > > >> multisets of n. A few quick examples led me to the following function: > > >> > > >> f[set_] := Table[set[[i]] - (i - 1), {i, Length[set]}] > > >> > > >> This allows the following construction using the KSubsets function > > >> from Combinatorica: > > >> > > >> << "Combinatorica`"; > > >> n = 6; > > >> k = 3; > > >> set = Range[n + k - 1]; > > >> Map[f, KSubsets[set, k]] > > >> > > >> ===OUTPUT=== > > >> {{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 1, 4}, {1, 1, 5}, {1, 1, 6}, {1, > > >> 2, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 3}, {1, > > >> 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 4}, {1, 4, 5}, {1, 4, 6}, {1, 5, > > >> 5}, {1, 5, 6}, {1, 6, 6}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, 2, > > >> 5}, {2, 2, 6}, {2, 3, 3}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, > > >> 4}, {2, 4, 5}, {2, 4, 6}, {2, 5, 5}, {2, 5, 6}, {2, 6, 6}, {3, 3, > > >> 3}, {3, 3, 4}, {3, 3, 5}, {3, 3, 6}, {3, 4, 4}, {3, 4, 5}, {3, 4, > > >> 6}, {3, 5, 5}, {3, 5, 6}, {3, 6, 6}, {4, 4, 4}, {4, 4, 5}, {4, 4, > > >> 6}, {4, 5, 5}, {4, 5, 6}, {4, 6, 6}, {5, 5, 5}, {5, 5, 6}, {5, 6, > > >> 6}, {6, 6, 6}} > > >> > > > > > > > > > -- > > DrMajorBob at yahoo.com > > >
- References:
- Re: generating submultisets with repeated elements
- From: monochrome <bayard.webb@gmail.com>
- Re: generating submultisets with repeated elements