Re: generating submultisets with repeated elements
- To: mathgroup at smc.vnet.net
- Subject: [mg103923] Re: generating submultisets with repeated elements
- From: "Kurt TeKolste" <tekolste at fastmail.us>
- Date: Tue, 13 Oct 2009 07:17:33 -0400 (EDT)
- References: <ha4r9k$d0h$1@smc.vnet.net> <200910071101.HAA00387@smc.vnet.net>
Binomial[n+k-1,k] is the number of non-decreasing series (i.e. repeats allowed) with *exactly* k choices from {1,...,n}. The number of coinSets is the number of non-decreasing series with *at most* k choices (with repeats) from {1,...,n}, i.e Sum[Binomial[n+i-1,i] , {i,1,k}] ekt Select On Mon, 12 Oct 2009 06:38 -0400, "DrMajorBob" <btreat1 at austin.rr.com> wrote: > Leonid, > > In my tests, that code returns too many subsets, and so does David's > coinSets... unless Binomial[n + k - 1, k] is the wrong count, and the > earlier methods were wrong. > > << "Combinatorica`"; > > Clear[f, g, test1, test2, test3] f[set_] := Table[set[[i]] - (i - 1), > {i, Length[set]}] g[set_] := set - Range[0, Length@set - 1] test1[n_, > k_] := f /@ KSubsets[Range[n + k - 1], k] test2[n_, k_] := g /@ > KSubsets[Range[n + k - 1], k] test3[n_, k_] := g /@ Subsets[Range[n + > k - 1], {k}] > > (* David Bevan *) > > msNew[s_List, k_] := Flatten[Flatten[ Outer[Inner[ConstantArray, > #1, #2, Flatten[List[##], 1] &, 1] &, Subsets[s, > {Length[#[[1]]]}], #, 1], 1] & /@ Split[Flatten[Permutations /@ > IntegerPartitions[k], 1], Length[#1] == Length[#2] &], 1] > coinSets[s_List, k_] := Join @@ Table[msNew[s, i], {i, k}] > coinSets[n_Integer, k_] := coinSets[Range@n, k] > > (* David Bevan *) Clear[MSN3, MSN3Base] MSN3Base = Compile[{{n, > _Integer}, {k, _Integer}}, Module[{h, ss = ConstantArray[1, k]}, > Table[(h = k; While[n === ss[[h]], h--]; ss = > Join[Take[ss, h - 1], ConstantArray[ss[[h]] + 1, k - h + 1]]), > {Binomial[n + k - 1, > k] - 1}]]]; MSN3[n_, k_] := Prepend[MSN3Base[n, k], > ConstantArray[1, k]] > > (* Ray Koopman *) > > MSN3a[n_, k_] := Join[{Table[1, {k}]}, MSN3Base[n, k]] > > (* Leonid Shifrin: *) Clear[subMultiSetsNew, coinSetsNew]; > subMultiSetsNew[s_List, k_] := Partition[s[[Flatten[#]]], k] &@ > Transpose[ Transpose[Subsets[Range[Length[s] + k - 1], {k}]] - > Range[0, k - 1]]; coinSetsNew[s_List, k_] := > Flatten[Table[subMultiSetsNew[s, i], {i, k}], 1]; > coinSetsNew[n_Integer, k_] := coinSetsNew[Range@n, k] > > n = 15; k = 7; Timing@Length@test3[n, k] Timing@Length@coinSets[n, k] > Timing@Length@MSN3[n, k] Timing@Length@MSN3a[n, k] > Timing@Length@coinSetsNew[n, k] Binomial[n + k - 1, k] > > {0.906038, 116280} > > {1.34786, 170543} > > {0.130817, 116280} > > {0.135289, 116280} > > {0.23856, 170543} > > 116280 > > n = 15; k = 10; Timing@Length@test3[n, k] Timing@Length@coinSets[n, k] > Timing@Length@MSN3[n, k] Timing@Length@MSN3a[n, k] > Timing@Length@coinSetsNew[n, k] Binomial[n + k - 1, k] > > {15.3937, 1961256} > > {29.7325, 3268759} > > {2.47349, 1961256} > > {2.33108, 1961256} > > {5.32499, 3268759} > > 1961256 > > Bobby > > On Sat, 10 Oct 2009 06:10:29 -0500, Leonid Shifrin > <lshifr at gmail.com> wrote: > > > I've made a few more optimizations: > > > > Clear[subMultiSetsNew]; subMultiSetsNew[s_, k_] := > > Partition[s[[Flatten[#]]], k] &@ Transpose[ > > Transpose[Subsets[Range[Length[s] + k - 1], {k}]] - Range[0, k > > - 1]]; > > > > Clear[coinSetsNew]; coinSetsNew[s_, k_] := > > Flatten[Table[subMultiSetsNew[s, i], {i, k}], 1]; > > > > Now (coinSets is David's "accumulator" version): > > > > In[1]:= (res1=coinSets[Range[15],7])//Length//Timing > > > > Out[1]= {2.333,170543} > > > > In[2]:= (res2 = coinSetsNew[Range[15],7])//Length//Timing Out[2]= > > {0.37,170543} > > > > In[3]:= res1==res2 > > > > Out[3]= True > > > > Regards, Leonid > > > > > > > > > > > > > > > > On Fri, Oct 9, 2009 at 4:18 AM, David Bevan <david.bevan at pb.com> > > wrote: > > > >> > >> ... and using Subsets[set, {k}] is much faster than > >> KSubsets[set, k] > >> > >> > >> > -----Original Message----- From: DrMajorBob > >> > [mailto:btreat1 at austin.rr.com] Sent: 8 October 2009 17:05 To: > >> > David Bevan; mathgroup at smc.vnet.net > >> > Cc: bayard.webb at gmail.com Subject: Re: [mg103827] Re: [mg103806] > >> > Re: generating submultisets > >> with > >> > repeated elements > >> > > >> > g is an improvement over f, I think: > >> > > >> > << "Combinatorica`"; > >> > > >> > Clear[f, g, test1, test2] f[set_] := Table[set[[i]] - (i - 1), > >> > {i, Length[set]}] g[set_] := set - Range[0, Length@set - 1] > >> > test1[n_, k_] := With[{set = Range[n + k - 1]}, > >> > f /@ KSubsets[set, k]] test2[n_, k_] := With[{set = Range[n + > >> > k - 1]}, > >> > g /@ KSubsets[set, k]] > >> > > >> > n = 15; k = 10; Timing@Length@test1[n, k] Timing@Length@test2[n, > >> > k] Binomial[n + k - 1, k] > >> > > >> > {32.9105, 1961256} > >> > > >> > {16.3832, 1961256} > >> > > >> > 1961256 > >> > > >> > Bobby > >> > > >> > On Thu, 08 Oct 2009 06:50:51 -0500, David Bevan > >> > <david.bevan at pb.com> wrote: > >> > > >> > > That's an interesting bijection I wasn't aware of. Thanks. > >> > > > >> > > David %^> > >> > > > >> > >> -----Original Message----- From: monochrome > >> > >> [mailto:bayard.webb at gmail.com] Sent: 7 October 2009 12:02 To: > >> > >> mathgroup at smc.vnet.net Subject: [mg103806] Re: generating > >> > >> submultisets with repeated > >> elements > >> > >> > >> > >> I did a little research and found out that there are Choose(n+k- > >> > >> 1, > >> k) > >> > >> multisets of size k from a set of size n. This made me think > >> > >> that there should be a mapping from the k-subsets of n+k-1 to > >> > >> the k- multisets of n. A few quick examples led me to the > >> > >> following > >> function: > >> > >> > >> > >> f[set_] := Table[set[[i]] - (i - 1), {i, Length[set]}] > >> > >> > >> > >> This allows the following construction using the KSubsets > >> > >> function from Combinatorica: > >> > >> > >> > >> << "Combinatorica`"; n = 6; k = 3; set = Range[n + k - 1]; > >> > >> Map[f, KSubsets[set, k]] > >> > >> > >> > >> ===OUTPUT=== > >> > >> {{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 1, 4}, {1, 1, 5}, {1, 1, > >> > >> 6}, > >> {1, > >> > >> 2, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, > >> > >> 3}, > >> {1, > >> > >> 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 4}, {1, 4, 5}, {1, 4, > >> > >> 6}, > >> {1, 5, > >> > >> 5}, {1, 5, 6}, {1, 6, 6}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, > >> > >> {2, > >> 2, > >> > >> 5}, {2, 2, 6}, {2, 3, 3}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, > >> > >> {2, 4, 4}, {2, 4, 5}, {2, 4, 6}, {2, 5, 5}, {2, 5, 6}, {2, > >> > >> 6, 6}, {3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {3, 3, 6}, {3, 4, > >> > >> 4}, {3, 4, 5}, {3, 4, 6}, {3, 5, 5}, {3, 5, 6}, {3, 6, 6}, > >> > >> {4, 4, 4}, {4, 4, 5}, {4, 4, 6}, {4, 5, 5}, {4, 5, 6}, {4, > >> > >> 6, 6}, {5, 5, 5}, {5, 5, 6}, {5, 6, 6}, {6, 6, 6}} > >> > >> > >> > > > >> > > >> > > >> > -- > >> > DrMajorBob at yahoo.com > >> > >> > >> > > > > > -- > DrMajorBob at yahoo.com > Regards, Kurt Tekolste
- References:
- Re: generating submultisets with repeated elements
- From: monochrome <bayard.webb@gmail.com>
- Re: generating submultisets with repeated elements