[Date Index]
[Thread Index]
[Author Index]
Re: generating submultisets with repeated elements
*To*: mathgroup at smc.vnet.net
*Subject*: [mg103997] Re: generating submultisets with repeated elements
*From*: Raffy <raffy at mac.com>
*Date*: Thu, 15 Oct 2009 07:15:53 -0400 (EDT)
*References*: <ha4r9k$d0h$1@smc.vnet.net>
Another way of looking at the "coin sets" is thinking about it in
terms of how each set combination is generated.
I'll start with a naive solution:
naive[k_, n_] := Union[Ceiling[#/n] & /@ Subsets[Range[k*n], {1, n}]];
naive[3, 3] = {{1}, {2}, {3}, {1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3},
{3, 3}, {1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 2, 2}, {1, 2, 3}, {1, 3,
3}, {2, 2, 2}, {2, 2, 3}, {2, 3, 3}, {3, 3, 3}}
This set of sets can be analyzed by asking: for each set, how many 1's
are there, how many 2's, etc...
recipe[k_, n_] := Table[Count[v, i], {v, naive[k, n]}, {i, k}];
recipe[3, 3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {2, 0, 0}, {1, 1, 0},
{1, 0, 1}, {0, 2, 0}, {0, 1, 1}, {0, 0, 2}, {3, 0, 0}, {2, 1, 0}, {2,
0, 1}, {1, 2, 0}, {1, 1, 1}, {1, 0, 2}, {0, 3, 0}, {0, 2, 1}, {0, 1,
2}, {0, 0, 3}}
For example:
set => recipe
{1} => {1, 0, 0} "a list with 1x1"
{1, 1} => {2, 0, 0} "a list with 2x1"
{2, 3, 3} => {0, 1, 2} "a list with 1x2 + 2x3"
If you take the element-sorted union of these recipes, you'll see a
pattern:
basis[k_, n_] := Union[Sort /@ recipe[k, n]]
basis[3, 3] = {{0, 0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 1, 1}, {0, 1, 2},
{1, 1, 1}}
You can reverse this operation by performing:
recipe[4, 3] === Join @@ (Permutations /@ basis[4, 3])
(note they might have different sortings)
So the process to generate all the coin sets is the following:
1. We need a function that generates the "basis" from above, given k
and n:
basis[len_, sum_] :=
Reap[Do[If[Length[#1] == n, Sow[PadRight[#1, len]],
Do[#0[Append[#1, i], i, #3 - i], {i, #2, #3}]] &[{}, 1,
sum], {n, len}]][[2, 1]];
basis[3, 3] = {{1, 0, 0}, {2, 0, 0}, {3, 0, 0}, {1, 1, 0}, {1, 2, 0},
{1, 1, 1}}
2. We need to permutate each basis to generate all the recipes for
that combination.
recipes[k_, n_] := Join @@ Table[Permutations[Developer`ToPackedArray
[v]], {v, basis[k, n]}];
3. At this stage, we have our answer as a list of recipes, where each
recipe is a vector of length k, whose sum is between 1 and n, can be
converted into a coin set by using it as a recipe (see above).
{0, 1, 0} => 1x2 => {2}
{3, 0, 0} => 3x1 => {1, 1, 1}
{1, 1, 1} => 1x1 + 1x2 + 1x3 => {1, 2, 3}
Timing[Length[recipes[15, 12]]] => {4.62615, 17383859}
Timing[Length[recipes[15, 10]]] => {0.841442, 3268759}
Timing[Length[recipes[15, 7]]] => {0.052076, 170543}
Another advantage of the recipe form is it makes Intersect/Union/
Complement/MemberQ/FreeQ fast to implement.
Prev by Date:
**Packaged Dynamic Problem**
Next by Date:
**Re: Piecewise vs. /; ?**
Previous by thread:
**Re: generating submultisets with repeated elements**
Next by thread:
**Re: generating submultisets with repeated elements**
| |