Integrate on StudentTDistribution
- To: mathgroup at smc.vnet.net
- Subject: [mg103303] Integrate on StudentTDistribution
- From: Alexey <lehin.p at gmail.com>
- Date: Mon, 14 Sep 2009 07:11:22 -0400 (EDT)
- References: <h87pi3$5hp$1@smc.vnet.net>
Hello, I am confused again with different behavior of Integrate[PDF[StudentTDistribution[nN], x], {x, min, max}] in Mathematica 7.01 and 5.2. In the version 5.2: In[2]:= Assuming[nN > 0 && Element[x, Reals] && max > min, Integrate[(nN/(nN + x^2))^((1 + nN)/2)/( Sqrt[nN] Beta[nN/2, 1/2]), {x, min, max}]] Out[2]= (max Hypergeometric2F1[1/2, (1 + nN)/2, 3/2, -(max^2/nN)] - min Hypergeometric2F1[1/2, (1 + nN)/2, 3/2, -(min^2/nN)])/(Sqrt[nN] Beta[nN/2, 1/2]) In the version 7.01: In[1]:= Assuming[nN > 0 && Element[x, Reals] && max > min, Integrate[PDF[StudentTDistribution[nN], x], {x, min, max}]] Out[1]= (1/Beta[nN/2, 1/2])nN^(nN/2) If[min > 0 && max > 0, (1/ nN)(max min)^-nN (-min^nN Hypergeometric2F1[nN/2, (1 + nN)/2, ( 2 + nN)/2, -(nN/max^2)] + max^nN Hypergeometric2F1[nN/2, (1 + nN)/2, (2 + nN)/ 2, -(nN/min^2)]), Integrate[(nN + x^2)^(-(1/2) - nN/2), {x, min, max}, Assumptions -> x \[Element] Reals && min <= 0 && max > min && nN > 0]] Are the requirements min > 0 && max > 0 really necessary?