Re: Bug in Sum?
- To: mathgroup at smc.vnet.net
- Subject: [mg109122] Re: Bug in Sum?
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 19 Apr 2010 04:07:04 -0400 (EDT)
Works fine on my system $Version 7.0 for Mac OS X x86 (64-bit) (February 19, 2009) A = x^(i - n) (x^(i - n) (1 - r x^n) - s); A == Expand[A] // Simplify True Sum[A, {i, 0, n - 1}] -(((x^n - 1)*(r*x^(2*n) + r*x^n + s*x^(n + 1) + s*x^n - x^n - 1))/(x^(2*n)*(x^2 - 1))) Sum[Expand[A], {i, 0, n - 1}] // FullSimplify -(((x^n - 1)*(x^n*(r*x^n + r + s*x + s - 1) - 1))/ (x^(2*n)*(x^2 - 1))) % == %% // Simplify True Bob Hanlon ---- gopher <gophergoon at gmail.com> wrote: ============= In the following, A and Expand[A] give different answers after when summed (a finite geometric series.) The result of summing A is clearly wrong, since it is independent of the parameters r and s. Abhishek In[44]:= A = x^(i - n) (x^(i - n) (1 - r x^n) - s); A == Expand[A] // Simplify Out[45]= True In[46]:= Sum[A, {i, 0, n - 1}] Out[46]= (x^(-2 n) (-1 + x^(2 n)))/(-1 + x^2) In[47]:= Sum[Expand[A], {i, 0, n - 1}] // FullSimplify Out[47]= -(( x^(-2 n) (-1 + x^n) (-1 + x^n (-1 + r + s + s x + r x^n)))/(-1 + x^2) )