Re: Problem with Min Max between two functions
- To: mathgroup at smc.vnet.net
- Subject: [mg112098] Re: Problem with Min Max between two functions
- From: "J. Batista" <jbatista800 at gmail.com>
- Date: Mon, 30 Aug 2010 06:20:21 -0400 (EDT)
Dear Maria, I reviewed your note. I did not experience the error that you described when executing the notebook. I will directly send you the original notebook with the additional lines of code appended to the end. This version of your original notebook also has the graphical results I obtained after executing it, in the form of the final image found in the notebook. Regards, J. Batista On Thu, Aug 26, 2010 at 6:49 AM, maria giovanna dainotti < mariagiovannadainotti at yahoo.it> wrote: > Dear J. Batista, > I used the following equations > R1====1.029 > R2====3.892 > R3====8 > e1====250 > e2====11.8 > e3====80.5 > i====p/12 > spherenear[x_,y_]:====((R3^2-x^2-y^2)^(1/2)) > spherefar[x_,y_]:====-((R3^2-x^2-y^2)^(1/2)) > jetnear[x_,y_]:====Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+y*Tan[i]]] > jetfar[x_,y_]:====Max[Re[spherefar[x,y]],Re[-(R1^2-x^2)^(1/2)]+y*Tan[i]] > jetbrightness[x_,y_]:====Boole[-R1==EF==82==A3x==EF==82==A3R1]*(jetnear[x,y] - > jetfar[x,y])*e1 > emptynear[x_,y_]:====Min[Re[spherenear[x,y]],Re[(R2^2-x^2)^(1/2)+y*Tan[i]]] > emptyfar[x_,y_]:====Max[Re[spherefar[x,y]],Re[-(R2^2-x^2)^(1/2)]+y*Tan[i]] > emptybrightness[x_,y_]:====Boole[-R1<x<R1]*(emptynear[x,y] -jetnear[x,y] + > jetfar[x,y]- emptyfar[x,y])*e2 +(Boole[-R2 > <x<-R1]+Boole[R2>x>R1])*(emptynear[x,y] -jetnear[x,y] + jetfar[x,y]- > emptyfar[x,y])*e2 > spherebrightness[x_,y_]:====Boole[-R2<x<R2]*(spherenear[x,y] -emptynear[x,y] > + > emptyfar[x,y]- spherefar[x,y])*e3 > +(Boole[x<-R2]+Boole[R2<x])*(spherenear[x,y] - > spherefar[x,y])*e3 > ==E3==80==80 > > f[x_,y_]:====((jetnear[x,y]-jetfar[x,y])*e1+e3*(spherenear[x,y]-emptynear[x,y]+emptyfar[x,y]-spherefar[x,y])+e2*(emptynear[x,y]-jetnear[x,y]+jetfar[x,y]-emptyfar[x,y]))*Boole[-R1<x<R1]+((emptynear[x,y]-emptyfar[x,y])*e2+e3*(spherenear[x,y]-emptynear[x,y]+emptyfar[x,y]-spherefar[x,y]))*(Boole[-R2<x<-R1]+Boole[R2>x>R1])+(spherenear[x,y]-spherefar[x,y])*e3*(Boole[x<-R2]+Boole[x>R2]) > > ==E3==80==80 > 1.029 > 3.892 > 8 > 250 > 11.8 > 80.5p==C2 > > originalPlot====ContourPlot[f[x,y],{x,-8,8},{y,-8,8},Contours==EF==82==AE50,ColorFunction==EF==82==AE(Hue[#]&)]/12 > > originalColorData========ImageData[originalPlot]; > > targetPixels========Position[originalColorData,originalColorData[[180,180= ]]];newColorData========ReplacePart[originalColorData,targetPixels > > -> > Image[newColorData] > But I got the following error message: > Part::partd: Part specification > \[NoBreak]originalColorData==EF==81==90180,180\[RightDoubleBracket]\[NoBr= eak] > is longer > than depth of object. ==EF==82==87 > ==C2 > Image::imgarray: The specified argument > \[NoBreak]originalColorData\[NoBreak] > should be an array of rank 2 or 3 with machine-size numbers. ==EF==82==87 > I will be very grateful if you could help me. > Thanks a lot > Best regards > Maria > ==C2 {1.,1.,1.}]; > > ________________________________ > Da: J. Batista <jbatista800 at gmail.com> > A: mathgroup at smc.vnet.net > Inviato: Lun 2 agosto 2010, 13:02:00 > Oggetto: [mg111445] Re: Problem with Min Max between two functions > > Maria/All, I just learned from a colleague that all equations on my messa= ge > have double equal signs.==C2 Please note that is probably due to a trans= m== > ission > error.==C2 All equations should only have a single equal sign.==C2 I'm > retransmitting my original message. > Regards, > J. Batista > On Sun, Aug 1, 2010 at 3:10 AM, J. Batista <jbatista800 at gmail.com> wrote: > > > Dean Maria, here is a possible solution to your question.==C2 The whit= e > > contour areas can be removed by approaching the output of ContourPlot a= s > == > an > > image, treating the task as one of image processing (as suggested > previou== > sly > > by Daniel Lichtblau).==C2 First, equate the original ContourPlot outpu= t== > with a > > variable name, for example originalPlot ======== Out[1]==C2 (where Out= [1] i== > s the > > ContourPlot output cell).==C2 Alternatively, you can simply select the > > ContourPlot, copy and then paste into the first line of the code sequen= ce > > below in place of the variable originalPlot.==C2 I will now display th= e== > four > > lines of the code sequence and then explain them afterwards. > > > > originalColorData ======== ImageData[originalPlot]; > > > > targetPixels ======== Position[originalColorData, originalColorData[[18= 0, > 180== > ]]]; > > > > newColorData ======== ReplacePart[originalColorData, targetPixels -> {1= ., 1., > > 1.}]; > > > > Image[newColorData] > > > > > > The first code line accomplishes the task of collecting and reading the > > ContourPlot into computer memory as image data, in this case a vector o= f > == > RGB > > color values.==C2 Note that I place a semicolon at the end of this and= == > other > > lines of code in order to suppress the visual output of the code > sequence== > 's > > result.==C2 This is because the vector is lengthy and will clog the no= t== > ebook > > unnecessarily. > > The second code line establishes the pattern by which the portions of t= he > > plot that you wish to alter are identified as a subset of the entire > > original data set.==C2 The pattern is established by entering the pixe= l > > coordinate of a representative target pixel that you wish to alter, in > th== > is > > case [[180, 180]] being one of the pixels in the white contour areas.=== C2== > You > > can determine an appropriate pixel coordinate by right-clicking in the > > original ContourPlot output, selecting Get Indices, and then guiding yo= ur > > cursor to a desired location within the plot. > > The third code line replaces the pixel locations flagged by the previou= s > > pattern search with new pixel data, in this case new RGB color values > tha== > t > > you select.==C2 I have used the example of {1., 1., 1.} to illustrate = c== > hanging > > from the semi-white color of the original plot to a true white that > match== > es > > the plot background.==C2 Be sure to use decimal points as above when e= x== > pressing > > color values for your pixels, as something like {1, 1, 1} will not > > be understood correctly for this purpose.==C2 If you want to change th= e > > semi-white color of your original plot to black, use {0., 0., 0.}. > > The fourth and final line re-establishes the newly altered set of pixel > > data as an image object, and displays the altered image. > > > > Hope this helps. > > Best Regards, > > J. Batista > > > >==C2 On Mon, Jul 26, 2010 at 6:37 AM, maria giovanna dainotti < > > mariagiovannadainotti at yahoo.it> wrote: > > > >> Dear Mathgroup, > >> I have the following function > >> R1========1.029 > >> R2========3.892 > >> R3========8 > >> e1========250 > >> e2========11.8 > >> e3========80.5 > >> i========pi/12 > >> spherenear[x_,y_]:========((R3^2-x^2-y^2)^(1/2)) > >> spherefar[x_,y_]:========-((R3^2-x^2-y^2)^(1/2)) > >> > emptynear[x_,y_]:========Min[Re[spherenear[x,y]],Re[(R2^2-x^2)^(1/2)+y*Ta= n[i== > ]]==== > ] > >> > emptyfar[x_,y_]:========Max[Re[spherefar[x,y]],Re[-(R2^2-x^2)^(1/2)]+y*Ta= n[i== > ]] > >> > jetnear[x_,y_]:========Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+y*Tan[= i]]== > ] > >> jetfar[x_,y_]:========Max[Re[spherefar[x,y]],Re[-(R1^2-x^2)^(1/2)]+y*T= an[i]] > >> > >> > f[x_,y_]:========((jetnear[x,y]-jetfar[x,y])*e1+e3*(spherenear[x,y]-empty= nea== > r[==== > > x,y]+emptyfar[x,y]-spherefar[x,y])+e2*(emptynear[x,y]-jetnear[x,y]+jetfar= [x== > ==== > > ,y]-emptyfar[x,y]))*Boole[-R1========EF========82========A3x========EF=== ======82========A3R1]+((emp== > tynear[x,y]-==== > > emptyfar[x,y])*e2+e3*(spherenear[x,y]-emptynear[x,y]+emptyfar[x,y]-sphere= fa== > ==== > > r[x,y]))*(Boole[-R2<x<-R1]+Boole[R2>x>R1])+(spherenear[x,y]-spherefar[x,y= ])== > ==== > *e3*(Boole[x<-R2]+Boole[x>R2]) > >> > >> > >> > ContourPlot[f[x,y],{x,-8,8},{y,-8,8},Contours========EF========82========= AE{0,100,20== > 0,300,==== > 400,500,600,700,800,900}] > >> > >> From the picture you can see there is a white contours that results a > bi== > ==== > t > >> odd, I > >> think th at it comes out from the introduction of the Min and Max. > >> I would like to remove this white contour. Could you help me? > >> Thanks a lot for your attention > >> Cheers > >> Maria > >> > >> > > > > > > > --0-882231370-1282758216==:97664 > Content-Type: text/html; charset=="utf-8" > Content-Transfer-Encoding: quoted-printable > X-Sun-Content-Length: 10136 > > <html><head><style type=="text/css"><!-- DIV {margin:0px;} --></style></h= e== > ad><body><div style=="font-family:arial, helvetica, sans-serif;font-size:= 1== > 4pt"><DIV>Dear J. Batista,</DIV>==0A<DIV>I used the following > equations</DIV== > >==0A<DIV>==0A<P>R1==1.029</P>==0A<P>R2==3.892</P>==0A<P>R3==8</P>==0A<P>= e1== > ==250</P>==0A<P>e2==11.8</P>==0A<P>e3==80.5</P>==0A<P>i==<FONT face==Math= == > ematica1Mono>p</FONT>/12</P>==0A<P>spherenear[x_,y_]:==((R3^2-x^2-y^2)^(1= /2== > ))</P>==0A<P>spherefar[x_,y_]:==-((R3^2-x^2-y^2)^(1/2))</P>==0A<P>jetnear= [x_== > ,y_]:==Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+y*Tan[i]]]</P>==0A<P>j= et== > far[x_,y_]:==Max[Re[spherefar[x,y]],Re[-(R1^2-x^2)^(1/2)]+y*Tan[i]]</P>=== 0A== > <P>jetbrightness[x_,y_]:==Boole[-R1<FONT face==Mathematica1Mono>==EF==82= ==A3== > </FONT>x<FONT face==Mathematica1Mono>==EF==82==A3</FONT>R1]*(jetnear[x,y]= - j== > etfar[x,y])*e1</P>==0A<P>emptynear[x_,y_]:==Min[Re[spherenear[x,y]],Re[(R= 2^== > 2-x^2)^(1/2)+y*Tan[i]]]</P>==0A<P>emptyfar[x_,y_]:==Max[Re[spherefar[x,y]= ],== > Re[-(R2^2-x^2)^(1/2)]+y*Tan[i]]</P>==0A<P>emptybrightness[x_,y_]:==Boole[= -R== > 1<FONT face==Mathematica1Mono><</FONT>x<FONT face==Mathematica1Mono>&l= == > t;</FONT>R1]*(emptynear[x,y] -jetnear[x,y] + jetfar[x,y]- > emptyfar[x,y])*e2== > +(Boole[-R2 <x<-R1]+Boole[R2>x>R1])*(emptynear[x,y] > -jetnear[x== > ,y] + jetfar[x,y]- emptyfar[x,y])*e2</P>==0A<P>spherebrightness[x_,y_]:=== Bo== > ole[-R2<FONT face==Mathematica1Mono><</FONT>x<FONT face==Mathematica1M= == > ono><</FONT>R2]*(spherenear[x,y] -emptynear[x,y] + emptyfar[x,y]- > sphere== > far[x,y])*e3 +(Boole[x<-R2]+Boole[R2<x])*(spherenear[x,y] - > spherefar== > [x,y])*e3</P>==0A<P>==E3==80==80</P>==0A<P>f[x_,y_]:==((jetnear[x,y]-jetf= ar[x,y== > > ])*e1+e3*(spherenear[x,y]-emptynear[x,y]+emptyfar[x,y]-spherefar[x,y])+e2= *(== > emptynear[x,y]-jetnear[x,y]+jetfar[x,y]-emptyfar[x,y]))*Boole[-R1<FONT > face== > ==Mathematica1Mono><</FONT>x<FONT face==Mathematica1Mono><</FONT>R1= == > > ]+((emptynear[x,y]-emptyfar[x,y])*e2+e3*(spherenear[x,y]-emptynear[x,y]+e= mp== > > tyfar[x,y]-spherefar[x,y]))*(Boole[-R2<x<-R1]+Boole[R2>x>R1])= +(== > > spherenear[x,y]-spherefar[x,y])*e3*(Boole[x<-R2]+Boole[x>R2])</P>=== 0A<== > > P>==E3==80==80</P>==0A<P>1.029</P>==0A<P>3.892</P>==0A<P>8</P>==0A<P>250<= /P>==0A<P>== > 11.8</P>==0A<P>80.5</P><FONT face==Mathematica1Mono>==0A<P>p</FONT><FONT = fac== > e=="Times New Roman">/12</FONT></P> <BR><B><FONT face==Courier>==0A<= P== > >originalPlot==ContourPlot[f[x,y],{x,-8,8},{y,-8,8},Contours</FONT><FONT = f== > ace==Mathematica1Mono>==EF==82==AE</FONT><FONT face==Courier>50,ColorFunc= tio== > n</FONT><FONT face==Mathematica1Mono>==EF==82==AE</FONT><FONT face==Couri= er>== > (Hue[#]&)]</P></B></FONT></DIV>==0A<DIV style=="FONT-FAMILY: arial, h= el== > vetica, sans-serif; FONT-SIZE: 14pt"><B><FONT face==Courier>==0A<P align= ==== > left>originalColorData====ImageData[originalPlot];</P>==0A<P align==left>= == > targetPixels====Position[originalColorData,originalColorData[[180,180]]];= == > newColorData====ReplacePart[originalColorData,targetPixels</P>==0A<P alig= n== > ==left>-></FONT><FONT face==Courier>{1.,1.,1.}];</P>==0A<P>Image[newCo= l== > orData]</P>==0A<P>But I got the following error message: > </P>==0A<P>Part::par== > td: Part specification \[NoBreak]originalColorData<FONT face==Mathematica= 2== > >==EF==81==90</FONT>180,180\[RightDoubleBracket]\[NoBreak] is longer than > dept== > h of object. <A href=="http://reference.wolfram.com/mathematica/ref/Part.= h== > tml"><FONT face==Mathematica1>==EF==82==87</FONT></A></P>==0A<P> </P= >==0A<== > P>Image::imgarray: The specified argument > \[NoBreak]originalColorData\[NoBr== > eak] should be an array of rank 2 or 3 with machine-size numbers. <A href= == > =="http://reference.wolfram.com/mathematica/ref/Image.html"><FONT face==M= == > athematica1>==EF==82==87</FONT></A></P>==0A<P>I will be very grateful if = you > co== > uld help me.</P>==0A<P>Thanks a lot</P>==0A<P>Best > regards</P>==0A<P>Maria</P>== > ==0A<P> </P></B></FONT>==0A<DIV style=="FONT-FAMILY: arial, helvetic= a, == > sans-serif; FONT-SIZE: 13px"><FONT size==2 face==Tahoma>==0A<HR SIZE==1>= == > ==0A<B><SPAN style=="FONT-WEIGHT: bold">Da:</SPAN></B> J. Batista <jba= ti== > sta800 at gmail.com><BR><B><SPAN style=="FONT-WEIGHT: bold">A:</SPAN></B>= == > mathgroup at smc.vnet.net<BR><B><SPAN style=="FONT-WEIGHT: bold">Inviato:</S= P== > AN></B> Lun 2 agosto 2010, 13:02:00<BR><B><SPAN style=="FONT-WEIGHT: bold= "== > >Oggetto:</SPAN></B> [mg111445] Re: Problem with Min Max between two > functi== > ons<BR></FONT><BR>Maria/All, I just learned from a colleague that all > equat== > ions on my message<BR>have double equal signs. Please note that is > pr== > obably due to a transmission<BR>error. All equations should only > have== > a single equal sign. I'm<BR>retransmitting my original > message.<BR>R== > egards,<BR>J. Batista<BR>On Sun, Aug 1, 2010 at 3:10 AM, J. Batista <<= A > == > href=="mailto:jbatista800 at gmail.com" ymailto=="mailto:jbatista800 at gmail.c= == > om">jbatista800 at gmail.com</A>> wrote:<BR><BR>> Dean Maria, here is = a > == > possible solution to your question. The white<BR>> contour areas > c== > an be > removed by approaching the output of ContourPlot as an<BR>> image, > trea== > ting the task as one of image processing (as suggested previously<BR>> > b== > y Daniel Lichtblau). First, equate the original ContourPlot output > wi== > th a<BR>> variable name, for example originalPlot ==== Out[1] (w= == > here Out[1] is the<BR>> ContourPlot output cell). Alternatively, > y== > ou can simply select the<BR>> ContourPlot, copy and then paste into th= e > == > first line of the code sequence<BR>> below in place of the variable > orig== > inalPlot. I will now display the four<BR>> lines of the code > seque== > nce and then explain them afterwards.<BR>><BR>> originalColorData = ==== > == ImageData[originalPlot];<BR>><BR>> targetPixels ==== Position[o= == > riginalColorData, originalColorData[[180, 180]]];<BR>><BR>> > newColorD== > ata ==== ReplacePart[originalColorData, targetPixels -> {1., 1.,<BR>&g= == > t; 1.}];<BR>><BR>> Image[newColorData]<BR>><BR>><BR>> The > fi== > rst code > line accomplishes the task of collecting and reading the<BR>> > ContourPl== > ot into computer memory as image data, in this case a vector of > RGB<BR>>== > color values. Note that I place a semicolon at the end of this and > o== > ther<BR>> lines of code in order to suppress the visual output of the > co== > de sequence's<BR>> result. This is because the vector is lengthy > a== > nd will clog the notebook<BR>> unnecessarily.<BR>> The second code > li== > ne establishes the pattern by which the portions of the<BR>> plot that > y== > ou wish to alter are identified as a subset of the entire<BR>> origina= l > == > data set. The pattern is established by entering the pixel<BR>> > co== > ordinate of a representative target pixel that you wish to alter, in > this<B== > R>> case [[180, 180]] being one of the pixels in the white contour > areas== > . You<BR>> can determine an appropriate pixel coordinate by > right-== > clicking in the<BR>> original ContourPlot output, selecting Get > Indices, and then guiding your<BR>> cursor to a desired location > within== > the plot.<BR>> The third code line replaces the pixel locations > flagged== > by the previous<BR>> pattern search with new pixel data, in this case > n== > ew RGB color values that<BR>> you select. I have used the exampl= e > == > of {1., 1., 1.} to illustrate changing<BR>> from the semi-white color > of== > the original plot to a true white that matches<BR>> the plot > background== > . Be sure to use decimal points as above when expressing<BR>> > colo== > r values for your pixels, as something like {1, 1, 1} will not<BR>> be > u== > nderstood correctly for this purpose. If you want to change > the<BR>&g== > t; semi-white color of your original plot to black, use {0., 0., > 0.}.<BR>&g== > t; The fourth and final line re-establishes the newly altered set of > pixel<== > BR>> data as an image object, and displays the altered > image.<BR>><BR== > >> Hope this helps.<BR>> Best Regards,<BR>> J. > Batista<BR>><BR>> On Mon, Jul 26, 2010 at 6:37 AM, maria > giova== > nna dainotti <<BR>> <A href=="mailto:mariagiovannadainotti at yahoo.it= "== > ymailto=="mailto:mariagiovannadainotti at yahoo.it">mariagiovannadainotti@y= a== > hoo.it</A>> wrote:<BR>><BR>>> Dear Mathgroup,<BR>>> I > hav== > e the following function<BR>>> R1====1.029<BR>>> R2====3.89== > 2<BR>>> R3====8<BR>>> e1====250<BR>>> e2====11.8<BR== > >>> e3====80.5<BR>>> i====pi/12<BR>>> spherenear[x_,y== > _]:====((R3^2-x^2-y^2)^(1/2))<BR>>> spherefar[x_,y_]:====-((R3^2-== > x^2-y^2)^(1/2))<BR>>> emptynear[x_,y_]:====Min[Re[spherenear[x,y]],= == > Re[(R2^2-x^2)^(1/2)+y*Tan[i]]==<BR>]<BR>>> emptyfar[x_,y_]:====Max= == > [Re[spherefar[x,y]],Re[-(R2^2-x^2)^(1/2)]+y*Tan[i]]<BR>>> > jetnear[x_,== > y_]:====Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+y*Tan[i]]]<BR>>>= == > ; jetfar[x_,y_]:====Max[Re[spherefar[x,y]],Re[-(R1^2-x^2)^(1/2)]+y*Tan[i]= == > ]<BR>>><BR>>> > f[x_,y_]:====((jetnear[x,y]-jetfar[x,y])*e1+e3*(spherenear[x,y]-emptynea= == > r[==<BR>x,y]+emptyfar[x,y]-spherefar[x,y])+e2*(emptynear[x,y]-jetnear[x,y= ]== > +jetfar[x==<BR>,y]-emptyfar[x,y]))*Boole[-R1====EF====82====A3x==== > ==EF====82====A3R1]+((emptynear[x,y]-==<BR>emptyfar[x,y])*e2+e3*(sphe== > renear[x,y]-emptynear[x,y]+emptyfar[x,y]-spherefa==<BR>r[x,y]))*(Boole[-R= 2== > <x<-R1]+Boole[R2>x>R1])+(spherenear[x,y]-spherefar[x,y])==<BR= >== > *e3*(Boole[x<-R2]+Boole[x>R2])<BR>>><BR>>><BR>>> > Co== > ntourPlot[f[x,y],{x,-8,8},{y,-8,8},Contours====EF====82====AE{0,100,2== > 00,300,==<BR>400,500,600,700,800,900}]<BR>>><BR>>> From the p= i== > cture you can see there is a white contours that results a bi==<BR>t<BR>&= g== > t;> odd, I<BR>>> think th at it comes out from the introduction > of== > the Min and Max.<BR>>> I would like to remove this white contour. > Co== > uld you help me?<BR>>> Thanks a lot for your attention<BR>>> > Ch== > eers<BR>>> > > Maria<BR>>><BR>>><BR>><BR><BR><BR></DIV></DIV></div><br>= ==0A== > ==0A==0A==0A </body></html> > --0-882231370-1282758216==:97664-- > > --00163691fc66c5736f048efc72a6 Content-Type: text/html; charset="ISO-8859-1" Content-Transfer-Encoding: quoted-printable X-Sun-Content-Length: 24381 <div>Dear Maria, I reviewed your note. I did not experience the error th= at you described when executing the notebook. I will directly send you t= he original notebook with the additional lines of code appended to the end.= This version of your original notebook also has the graphical results I= obtained after executing it, in the form of the final image found in the n= otebook.</div> <div>Regards,</div> <div>J. Batista<br><br></div> <div class="gmail_quote">On Thu, Aug 26, 2010 at 6:49 AM, maria giovanna = dainotti <span dir="ltr"><<a href="mailto:mariagiovannadainotti@yaho= o.it">mariagiovannadainotti at yahoo.it</a>></span> wrote:<br> <blockquote style="BORDER-LEFT: #ccc 1px solid; MARGIN: 0px 0px 0px 0.8ex= ; PADDING-LEFT: 1ex" class="gmail_quote">Dear J. Batista,<br>I used the f= ollowing equations<br>R1==1.029<br>R2==3.892<br>R3==8<br>e1== =250<br>e2==11.8<br> e3==80.5<br>i==p/12<br>spherenear[x_,y_]:==((R3^2-x^2-y^2)^(1/2= ))<br>spherefar[x_,y_]:==-((R3^2-x^2-y^2)^(1/2))<br>jetnear[x_,y_]:== =Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+y*Tan[i]]]<br>jetfar[x_,y_]:= ==Max[Re[spherefar[x,y]],Re[-(R1^2-x^2)^(1/2)]+y*Tan[i]]<br> jetbrightness[x_,y_]:==Boole[-R1=EF=82=A3x=EF=82=A3R1]*(jet= near[x,y] - jetfar[x,y])*e1<br>emptynear[x_,y_]:==Min[Re[spherenear[x,y= ]],Re[(R2^2-x^2)^(1/2)+y*Tan[i]]]<br>emptyfar[x_,y_]:==Max[Re[spherefar= [x,y]],Re[-(R2^2-x^2)^(1/2)]+y*Tan[i]]<br> emptybrightness[x_,y_]:==Boole[-R1<x<R1]*(emptynear[x,y] -jetnear= [x,y] +<br>jetfar[x,y]- emptyfar[x,y])*e2 +(Boole[-R2<br><x<-R1]+Bool= e[R2>x>R1])*(emptynear[x,y] -jetnear[x,y] + jetfar[x,y]-<br>emptyfar[= x,y])*e2<br> spherebrightness[x_,y_]:==Boole[-R2<x<R2]*(spherenear[x,y] -empty= near[x,y] +<br>emptyfar[x,y]- spherefar[x,y])*e3 +(Boole[x<-R2]+Boole[R2= <x])*(spherenear[x,y] -<br>spherefar[x,y])*e3<br>=E3=80=80<br>f[x_= ,y_]:==((jetnear[x,y]-jetfar[x,y])*e1+e3*(spherenear[x,y]-emptynear[x,y= ]+emptyfar[x,y]-spherefar[x,y])+e2*(emptynear[x,y]-jetnear[x,y]+jetfar[x,y]= -emptyfar[x,y]))*Boole[-R1<x<R1]+((emptynear[x,y]-emptyfar[x,y])*e2+e= 3*(spherenear[x,y]-emptynear[x,y]+emptyfar[x,y]-spherefar[x,y]))*(Boole[-R2= <x<-R1]+Boole[R2>x>R1])+(spherenear[x,y]-spherefar[x,y])*e3*(Bo= ole[x<-R2]+Boole[x>R2])<br> <br>=E3=80=80<br>1.029<br>3.892<br>8<br>250<br>11.8<br>80.5p=C2<br>= originalPlot==ContourPlot[f[x,y],{x,-8,8},{y,-8,8},Contours=EF=82= =AE50,ColorFunction=EF=82=AE(Hue[#]&)]/12<br><br>originalColorD= ata====ImageData[originalPlot];<br> targetPixels====Position[originalColorData,originalColorData[[180,1= 80]]];newColorData====ReplacePart[originalColorData,targetPixels<br= ><br>-><br>Image[newColorData]<br>But I got the following error message:= <br>Part::partd: Part specification<br> \[NoBreak]originalColorData=EF=81=90180,180\[RightDoubleBracket]\[NoB= reak] is longer<br>than depth of object. =EF=82=87<br>=C2<br>Image:= :imgarray: The specified argument \[NoBreak]originalColorData\[NoBreak]<br>= should be an array of rank 2 or 3 with machine-size numbers. =EF=82=8= 7<br> I will be very grateful if you could help me.<br>Thanks a lot<br>Best regar= ds<br>Maria<br>=C2 {1.,1.,1.}];<br><br>________________________________<b= r>Da: J. Batista <<a href="mailto:jbatista800 at gmail.com">jbatista800@g= mail.com</a>><br> A: <a href="mailto:mathgroup at smc.vnet.net">mathgroup at smc.vnet.net</a><br>= Inviato: Lun 2 agosto 2010, 13:02:00<br>Oggetto: [mg111445] Re: Problem wit= h Min Max between two functions<br><br>Maria/All, I just learned from a col= league that all equations on my message<br> have double equal signs.=C2 Please note that is probably due to a tran= sm=<br>ission<br>error.=C2 All equations should only have a single e= qual sign.=C2 I'm<br>retransmitting my original message.<br>Regard= s,<br>J. Batista<br> On Sun, Aug 1, 2010 at 3:10 AM, J. Batista <<a href="mailto:jbatista80= 0 at gmail.com">jbatista800 at gmail.com</a>> wrote:<br><br>> Dean Maria, h= ere is a possible solution to your question.=C2 The white<br>> cont= our areas can be removed by approaching the output of ContourPlot as =<br= > an<br>> image, treating the task as one of image processing (as suggeste= d previou=<br>sly<br>> by Daniel Lichtblau).=C2 First, equate the= original ContourPlot output=<br> with a<br>> variable name, for exa= mple originalPlot ==== Out[1]=C2 (where Out[1] i=<br> s the<br>> ContourPlot output cell).=C2 Alternatively, you can simp= ly select the<br>> ContourPlot, copy and then paste into the first line = of the code sequence<br>> below in place of the variable originalPlot.= =C2 I will now display the=<br> four<br>> lines of the code sequence and then explain them afterwards= .<br>><br>> originalColorData ==== ImageData[originalPlot];<b= r>><br>> targetPixels ==== Position[originalColorData, origin= alColorData[[180, 180=<br> ]]];<br>><br>> newColorData ==== ReplacePart[originalColorDat= a, targetPixels -> {1., 1.,<br>> 1.}];<br>><br>> Image[newColor= Data]<br>><br>><br>> The first code line accomplishes the task of = collecting and reading the<br> > ContourPlot into computer memory as image data, in this case a vector = of =<br>RGB<br>> color values.=C2 Note that I place a semicolon a= t the end of this and =<br>other<br>> lines of code in order to suppre= ss the visual output of the code sequence=<br> 's<br>> result.=C2 This is because the vector is lengthy and wi= ll clog the not=<br>ebook<br>> unnecessarily.<br>> The second code = line establishes the pattern by which the portions of the<br>> plot that= you wish to alter are identified as a subset of the entire<br> > original data set.=C2 The pattern is established by entering the = pixel<br>> coordinate of a representative target pixel that you wish to = alter, in th=<br>is<br>> case [[180, 180]] being one of the pixels in = the white contour areas.=C2=<br> You<br>> can determine an appropriate pixel coordinate by right-click= ing in the<br>> original ContourPlot output, selecting Get Indices, and = then guiding your<br>> cursor to a desired location within the plot.<br> > The third code line replaces the pixel locations flagged by the previo= us<br>> pattern search with new pixel data, in this case new RGB color v= alues tha=<br>t<br>> you select.=C2 I have used the example of {1= ., 1., 1.} to illustrate c=<br> hanging<br>> from the semi-white color of the original plot to a true wh= ite that match=<br>es<br>> the plot background.=C2 Be sure to use= decimal points as above when ex=<br>pressing<br>> color values for yo= ur pixels, as something like {1, 1, 1} will not<br> > be understood correctly for this purpose.=C2 If you want to chang= e the<br>> semi-white color of your original plot to black, use {0., 0.,= 0.}.<br>> The fourth and final line re-establishes the newly altered se= t of pixel<br> > data as an image object, and displays the altered image.<br>><br>&g= t; Hope this helps.<br>> Best Regards,<br>> J. Batista<br>><br>>= ;=C2 On Mon, Jul 26, 2010 at 6:37 AM, maria giovanna dainotti <<br> > <a href="mailto:mariagiovannadainotti at yahoo.it">mariagiovannadainott= i at yahoo.it</a>> wrote:<br>><br>>> Dear Mathgroup,<br>>> I= have the following function<br>>> R1====1.029<br>>> R2= ====3.892<br> >> R3====8<br>>> e1====250<br>>> e2=== ==11.8<br>>> e3====80.5<br>>> i====pi/12<br= >>> spherenear[x_,y_]:====((R3^2-x^2-y^2)^(1/2))<br>>> = spherefar[x_,y_]:====-((R3^2-x^2-y^2)^(1/2))<br> >> emptynear[x_,y_]:====Min[Re[spherenear[x,y]],Re[(R2^2-x^2)= ^(1/2)+y*Tan[i=<br>]]==<br>]<br>>> emptyfar[x_,y_]:===== Max[Re[spherefar[x,y]],Re[-(R2^2-x^2)^(1/2)]+y*Tan[i=<br>]]<br>>> j= etnear[x_,y_]:====Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+y*Tan= [i]]=<br> ]<br>>> jetfar[x_,y_]:====Max[Re[spherefar[x,y]],Re[-(R1^2-x^= 2)^(1/2)]+y*Tan[i]]<br>>><br>>> f[x_,y_]:====((jetnear[= x,y]-jetfar[x,y])*e1+e3*(spherenear[x,y]-emptynea=<br>r[==<br>x,y]+em= ptyfar[x,y]-spherefar[x,y])+e2*(emptynear[x,y]-jetnear[x,y]+jetfar[x=<br> ==<br>,y]-emptyfar[x,y]))*Boole[-R1====EF====82=== ==A3x====EF====82====A3R1]+((emp=<br>tynear[x= ,y]-==<br>emptyfar[x,y])*e2+e3*(spherenear[x,y]-emptynear[x,y]+emptyfar= [x,y]-spherefa=<br>==<br>r[x,y]))*(Boole[-R2<x<-R1]+Boole[R2>= ;x>R1])+(spherenear[x,y]-spherefar[x,y])=<br> ==<br>*e3*(Boole[x<-R2]+Boole[x>R2])<br>>><br>>><br>&= gt;> ContourPlot[f[x,y],{x,-8,8},{y,-8,8},Contours====EF=== ==82====AE{0,100,20=<br>0,300,==<br>400,500,600,700,800,9= 00}]<br>>><br>>> From the picture you can see there is a white = contours that results a bi=<br> ==<br>t<br>>> odd, I<br>>> think th at it comes out from th= e introduction of the Min and Max.<br>>> I would like to remove this = white contour. Could you help me?<br>>> Thanks a lot for your attenti= on<br> >> Cheers<br>>> Maria<br>>><br>>><br>><br><br><b= r><br><br>--0-882231370-1282758216=:97664<br>Content-Type: text/html; cha= rset="utf-8"<br>Content-Transfer-Encoding: quoted-printable<br> X-Sun-Content-Length: 10136<br><br><html><head><style type= ="text/css"><!-- DIV {margin:0px;} --></style>&l= t;/he=<br>ad><body><div style="font-family:arial, helv= etica, sans-serif;font-size:1=<br> 4pt"><DIV>Dear J. Batista,</DIV>=0A<DIV>I used = the following equations</DIV=<br>>=0A<DIV>=0A<P>R1= =1.029</P>=0A<P>R2=3.892</P>=0A<P>R3=8<= ;/P>=0A<P>e1=<br> =250</P>=0A<P>e2=11.8</P>=0A<P>e3=80.5<= ;/P>=0A<P>i=<FONT face=Math=<br>ematica1Mono>p</F= ONT>/12</P>=0A<P>spherenear[x_,y_]:=((R3^2-x^2-y^2)^(1/2= =<br>))</P>=0A<P>spherefar[x_,y_]:=-((R3^2-x^2-y^2)^(1/2)= )</P>=0A<P>jetnear[x_=<br> ,y_]:=Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+y*Tan[i]]]</P>== 0A<P>jet=<br>far[x_,y_]:=Max[Re[spherefar[x,y]],Re[-(R1^2-x^2)^(1= /2)]+y*Tan[i]]</P>=0A=<br><P>jetbrightness[x_,y_]:=Boole[= -R1<FONT face=Mathematica1Mono>=EF=82=A3=<br> </FONT>x<FONT face=Mathematica1Mono>=EF=82=A3</FONT&= gt;R1]*(jetnear[x,y] - j=<br>etfar[x,y])*e1</P>=0A<P>emptyn= ear[x_,y_]:=Min[Re[spherenear[x,y]],Re[(R2^=<br>2-x^2)^(1/2)+y*Tan[i]]]= </P>=0A<P>emptyfar[x_,y_]:=Max[Re[spherefar[x,y]],=<br> Re[-(R2^2-x^2)^(1/2)]+y*Tan[i]]</P>=0A<P>emptybrightness[x_,y= _]:=Boole[-R=<br>1<FONT face=Mathematica1Mono>&lt;</FONT= >x<FONT face=Mathematica1Mono>&l=<br>t;</FONT>R1]*(e= mptynear[x,y] -jetnear[x,y] + jetfar[x,y]- emptyfar[x,y])*e2=<br> +(Boole[-R2 &lt;x&lt;-R1]+Boole[R2&gt;x&gt;R1])*(emptyne= ar[x,y] -jetnear[x=<br>,y] + jetfar[x,y]- emptyfar[x,y])*e2</P>=0= A<P>spherebrightness[x_,y_]:=Bo=<br>ole[-R2<FONT face=Mathem= atica1Mono>&lt;</FONT>x<FONT face=Mathematica1M=<br> ono>&lt;</FONT>R2]*(spherenear[x,y] -emptynear[x,y] + emptyfar= [x,y]- sphere=<br>far[x,y])*e3 +(Boole[x&lt;-R2]+Boole[R2&lt;x])*= (spherenear[x,y] - spherefar=<br>[x,y])*e3</P>=0A<P>=E3= =80=80</P>=0A<P>f[x_,y_]:=((jetnear[x,y]-jetfar[x,y=<= br> ])*e1+e3*(spherenear[x,y]-emptynear[x,y]+emptyfar[x,y]-spherefar[x,y])+e2*(= =<br>emptynear[x,y]-jetnear[x,y]+jetfar[x,y]-emptyfar[x,y]))*Boole[-R1<= ;FONT face=<br>=Mathematica1Mono>&lt;</FONT>x<FONT face= =Mathematica1Mono>&lt;</FONT>R1=<br> ]+((emptynear[x,y]-emptyfar[x,y])*e2+e3*(spherenear[x,y]-emptynear[x,y]+emp= =<br>tyfar[x,y]-spherefar[x,y]))*(Boole[-R2&lt;x&lt;-R1]+Boole[R2= &gt;x&gt;R1])+(=<br>spherenear[x,y]-spherefar[x,y])*e3*(Boole[x&a= mp;lt;-R2]+Boole[x&gt;R2])</P>=0A<=<br> P>=E3=80=80</P>=0A<P>1.029</P>=0A<P>3.= 892</P>=0A<P>8</P>=0A<P>250</P>=0A<P= >=<br>11.8</P>=0A<P>80.5</P><FONT face=Mathem= atica1Mono>=0A<P>p</FONT><FONT fac=<br> e="Times New Roman">/12</FONT></P>&nbsp;<= BR><B><FONT face=Courier>=0A<P=<br>>originalPlot= =ContourPlot[f[x,y],{x,-8,8},{y,-8,8},Contours</FONT><FONT f=<= br>ace=Mathematica1Mono>=EF=82=AE</FONT><FONT face=Co= urier>50,ColorFunctio=<br> n</FONT><FONT face=Mathematica1Mono>=EF=82=AE</FONT&= gt;<FONT face=Courier>=<br>(Hue[#]&amp;)]</P></B>= </FONT></DIV>=0A<DIV style="FONT-FAMILY: arial, hel= =<br>vetica, sans-serif; FONT-SIZE: 14pt"><B><FONT face= =Courier>=0A<P align==<br> left>originalColorData==ImageData[originalPlot];</P>=0A<P= align=left>=<br>targetPixels==Position[originalColorData,origin= alColorData[[180,180]]];=<br>newColorData==ReplacePart[originalColorD= ata,targetPixels</P>=0A<P align=<br> =left>-&gt;</FONT><FONT face=Courier>{1.,1.,1.}];<= ;/P>=0A<P>Image[newCol=<br>orData]</P>=0A<P>But = I got the following error message: </P>=0A<P>Part::par=<br>= td: Part specification \[NoBreak]originalColorData<FONT face=Mathemati= ca2=<br> >=EF=81=90</FONT>180,180\[RightDoubleBracket]\[NoBreak] is l= onger than dept=<br>h of object. <A href="<a href="http://ref= erence.wolfram.com/mathematica/ref/Part.h=" target="_blank">http://refe= rence.wolfram.com/mathematica/ref/Part.h=</a><br> tml"><FONT face=Mathematica1>=EF=82=87</FONT>&l= t;/A></P>=0A<P>&nbsp;</P>=0A<=<br>P>Im= age::imgarray: The specified argument \[NoBreak]originalColorData\[NoBr=<= br>eak] should be an array of rank 2 or 3 with machine-size numbers. <A = href=<br> ="<a href="http://reference.wolfram.com/mathematica/ref/Image.html= " target="_blank">http://reference.wolfram.com/mathematica/ref/Image.html= </a>"><FONT face=M=<br>athematica1>=EF=82=87</FO= NT></A></P>=0A<P>I will be very grateful if you co= =<br> uld help me.</P>=0A<P>Thanks a lot</P>=0A<P>Bes= t regards</P>=0A<P>Maria</P>=<br>=0A<P>&n= bsp;</P></B></FONT>=0A<DIV style="FONT-FAMILY= : arial, helvetica, =<br> sans-serif; FONT-SIZE: 13px"><FONT size=2 face=Tahoma>== 0A<HR SIZE=1>=<br>=0A<B><SPAN style="FONT-WEIGH= T: bold">Da:</SPAN></B> J. Batista &lt;jbati=<br>= <a href="mailto:sta800 at gmail.com">sta800 at gmail.com</a>&gt;<BR>&= lt;B><SPAN style="FONT-WEIGHT: bold">A:</SPAN>&l= t;/B> =<br> <a href="mailto:mathgroup at smc.vnet.net">mathgroup at smc.vnet.net</a><BR&= gt;<B><SPAN style="FONT-WEIGHT: bold">Inviato:</= SP=<br>AN></B> Lun 2 agosto 2010, 13:02:00<BR><B><= ;SPAN style="FONT-WEIGHT: bold"=<br> >Oggetto:</SPAN></B> [mg111445] Re: Problem with Min Max bet= ween two functi=<br>ons<BR></FONT><BR>Maria/All, I just= learned from a colleague that all equat=<br>ions on my message<BR>= have double equal signs.&nbsp; Please note that is pr=<br> obably due to a transmission<BR>error.&nbsp; All equations should= only have=<br> a single equal sign.&nbsp; I'm<BR>retrans= mitting my original message.<BR>R=<br>egards,<BR>J. Batista&l= t;BR>On Sun, Aug 1, 2010 at 3:10 AM, J. Batista &lt;<A =<br> href="mailto:<a href="mailto:jbatista800 at gmail.com">jbatista800@gm= ail.com</a>" ymailto="mailto:<a href="mailto:jbatista800@gmai= l.c">jbatista800 at gmail.c</a>=<br>om"><a href="mailto:jbatista80= 0 at gmail.com">jbatista800 at gmail.com</a></A>&gt; wrote:<BR>&l= t;BR>&gt; Dean Maria, here is a =<br> possible solution to your question.&nbsp; The white<BR>&gt; c= ontour areas c=<br>an be<br> removed by approaching the output of Conto= urPlot as an<BR>&gt; image, trea=<br>ting the task as one of im= age processing (as suggested previously<BR>&gt; b=<br> y Daniel Lichtblau).&nbsp; First, equate the original ContourPlot outpu= t wi=<br>th a<BR>&gt; variable name, for example originalPlot = == Out[1]&nbsp; (w=<br>here Out[1] is the<BR>&gt; Conto= urPlot output cell).&nbsp; Alternatively, y=<br> ou can simply select the<BR>&gt; ContourPlot, copy and then paste= into the =<br>first line of the code sequence<BR>&gt; below in= place of the variable orig=<br>inalPlot.&nbsp; I will now display th= e four<BR>&gt; lines of the code seque=<br> nce and then explain them afterwards.<BR>&gt;<BR>&gt; o= riginalColorData ==<br>= ImageData[originalPlot];<BR>&gt;&l= t;BR>&gt; targetPixels == Position[o=<br>riginalColorData, ori= ginalColorData[[180, 180]]];<BR>&gt;<BR>&gt; newColorD= =<br> ata == ReplacePart[originalColorData, targetPixels -&gt; {1., 1.,&l= t;BR>&g=<br>t; 1.}];<BR>&gt;<BR>&gt; Image[new= ColorData]<BR>&gt;<BR>&gt;<BR>&gt; The fi=<= br>rst code<br> line accomplishes the task of collecting and reading the<BR>&g= t; ContourPl=<br>ot into computer memory as image data, in this case a ve= ctor of RGB<BR>&gt;=<br> color values.&nbsp; Note that I = place a semicolon at the end of this and o=<br> ther<BR>&gt; lines of code in order to suppress the visual output= of the co=<br>de sequence's<BR>&gt; result.&nbsp; This= is because the vector is lengthy a=<br>nd will clog the notebook<BR&g= t;&gt; unnecessarily.<BR>&gt; The second code li=<br> ne establishes the pattern by which the portions of the<BR>&gt; p= lot that y=<br>ou wish to alter are identified as a subset of the entire&= lt;BR>&gt; original =<br>data set.&nbsp; The pattern is establ= ished by entering the pixel<BR>&gt; co=<br> ordinate of a representative target pixel that you wish to alter, in this&l= t;B=<br>R>&gt; case [[180, 180]] being one of the pixels in the wh= ite contour areas=<br>.&nbsp; You<BR>&gt; can determine an = appropriate pixel coordinate by right-=<br> clicking in the<BR>&gt; original ContourPlot output, selecting Ge= t<br> Indices, and then guiding your<BR>&gt; cursor to a desire= d location within=<br> the plot.<BR>&gt; The third code line = replaces the pixel locations flagged=<br> by the previous<BR>&gt; pattern search with new pixel data, in= this case n=<br>ew RGB color values that<BR>&gt; you select.&a= mp;nbsp; I have used the example =<br>of {1., 1., 1.} to illustrate chang= ing<BR>&gt; from the semi-white color of=<br> the original plot to a true white that matches<BR>&gt; the plo= t background=<br>.&nbsp; Be sure to use decimal points as above when = expressing<BR>&gt; colo=<br>r values for your pixels, as someth= ing like {1, 1, 1} will not<BR>&gt; be u=<br> nderstood correctly for this purpose.&nbsp; If you want to change the&l= t;BR>&g=<br>t; semi-white color of your original plot to black, us= e {0., 0., 0.}.<BR>&g=<br>t; The fourth and final line re-estab= lishes the newly altered set of pixel<=<br> BR>&gt; data as an image object, and displays the altered image.<= BR>&gt;<BR=<br>>&gt; Hope this helps.<BR>&gt; = Best Regards,<BR>&gt; J.<br> Batista<BR>&gt;<BR>= ;&gt;&nbsp; On Mon, Jul 26, 2010 at 6:37 AM, maria giova=<br> nna dainotti &lt;<BR>&gt; <A href="mailto:<a href= ="mailto:mariagiovannadainotti at yahoo.it">mariagiovannadainotti at yahoo.it</= a>"=<br> ymailto="mailto:<a href="mailto:mariagiovannadai= notti at yahoo.it">mariagiovannadainotti at yahoo.it</a>">mariagiovannada= inotti@ya=<br> <a href="http://hoo.it/" target="_blank">hoo.it</a></A>&gt; w= rote:<BR>&gt;<BR>&gt;&gt; Dear Mathgroup,<BR>= &gt;&gt; I hav=<br>e the following function<BR>&gt;&= ;gt; R1==1.029<BR>&gt;&gt; R2==3.89=<br> 2<BR>&gt;&gt; R3==8<BR>&gt;&gt; e1==250= <BR>&gt;&gt; e2==11.8<BR=<br>>&gt;&gt; e3= ==80.5<BR>&gt;&gt; i==pi/12<BR>&gt;&gt;= spherenear[x_,y=<br> _]:==((R3^2-x^2-y^2)^(1/2))<BR>&gt;&gt; spherefar[x_,y_]:= ==-((R3^2-=<br>x^2-y^2)^(1/2))<BR>&gt;&gt; emptynear[x_= ,y_]:==Min[Re[spherenear[x,y]],=<br>Re[(R2^2-x^2)^(1/2)+y*Tan[i]]=&= lt;BR>]<BR>&gt;&gt; emptyfar[x_,y_]:==Max=<br> [Re[spherefar[x,y]],Re[-(R2^2-x^2)^(1/2)]+y*Tan[i]]<BR>&gt;&g= t; jetnear[x_,=<br>y_]:==Min[Re[spherenear[x,y]],Re[(R1^2-x^2)^(1/2)+= y*Tan[i]]]<BR>&gt;&gt=<br>; jetfar[x_,y_]:==Max[Re[sphe= refar[x,y]],Re[-(R1^2-x^2)^(1/2)]+y*Tan[i]=<br> ]<BR>&gt;&gt;<BR>&gt;&gt;<br> f[x_,y_]:=== ((jetnear[x,y]-jetfar[x,y])*e1+e3*(spherenear[x,y]-emptynea=<br>r[=<= BR>x,y]+emptyfar[x,y]-spherefar[x,y])+e2*(emptynear[x,y]-jetnear[x,y]== <br>+jetfar[x=<BR>,y]-emptyfar[x,y]))*Boole[-R1==EF==82== =A3x==<br> =EF==82==A3R1]+((emptynear[x,y]-=<BR>emptyfar[x,y])*e2+e3= *(sphe=<br>renear[x,y]-emptynear[x,y]+emptyfar[x,y]-spherefa=<BR>= r[x,y]))*(Boole[-R2=<br>&lt;x&lt;-R1]+Boole[R2&gt;x&gt;R1= ])+(spherenear[x,y]-spherefar[x,y])=<BR>=<br> *e3*(Boole[x&lt;-R2]+Boole[x&gt;R2])<BR>&gt;&gt;<B= R>&gt;&gt;<BR>&gt;&gt; Co=<br>ntourPlot[f[x,y],{= x,-8,8},{y,-8,8},Contours==EF==82==AE{0,100,2=<br>00,300,=&= lt;BR>400,500,600,700,800,900}]<BR>&gt;&gt;<BR>&= gt;&gt; From the pi=<br> cture you can see there is a white contours that results a bi=<BR>t= <BR>&g=<br>t;&gt; odd, I<BR>&gt;&gt; think th= at it comes out from the introduction of=<br> the Min and Max.<BR&g= t;&gt;&gt; I would like to remove this white contour. Co=<br> uld you help me?<BR>&gt;&gt; Thanks a lot for your attention&= lt;BR>&gt;&gt; Ch=<br>eers<BR>&gt;&gt;<br> Mar= ia<BR>&gt;&gt;<BR>&gt;&gt;<BR>&gt;<= ;BR><BR><BR></DIV></DIV></div><br>= =0A=<br> =0A=0A=0A </body></html><br>--0-882231370-1282= 758216=:97664--<br><br></blockquote></div><br> --00163691fc66c5736f048efc72a6--