Re: Mathematica plaintext output
- To: mathgroup at smc.vnet.net
- Subject: [mg107395] Re: [mg107368] Mathematica plaintext output
- From: Patrick Scheibe <pscheibe at trm.uni-leipzig.de>
- Date: Thu, 11 Feb 2010 06:54:17 -0500 (EST)
- References: <201002111016.FAA27914@smc.vnet.net>
Hi, the output says "your eigenvalues are the 3rd, 2nd and 1st root of the polynomial 12 + 12x - 12x^2 + x^3, which are not calculated analytically". Want numerical values? Eigenvalues[{{1, 2, 3}, {2, 6, 4}, {3, 4, 5}}] // N Read the documentation to Root. Cheers Patrick On Thu, 2010-02-11 at 05:16 -0500, nevjernik wrote: > Maybe this is trivial one, but I don't know how to interpret output of > following: > > In: > Eigenvalues[{{1, 2, 3}, {2, 6, 4}, {3, 4, 5}}] > > Out: > {Root[12 + 12 #1 - 12 #1^2 + #1^3 &, 3], > Root[12 + 12 #1 - 12 #1^2 + #1^3 &, 2], > Root[12 + 12 #1 - 12 #1^2 + #1^3 &, 1]} > > > > WolframAlpha gives reasonable solutions: > > lambda_1 = 4+(6 2^(2/3))/(17+i sqrt(143))^(1/3)+(2 (17+i > sqrt(143)))^(1/3) > lambda_2 = 4-(3 2^(2/3) (1-i sqrt(3)))/(17+i sqrt(143))^(1/3)-((1+i > sqrt(3)) (17+i sqrt(143))^(1/3))/2^(2/3) > lambda_3 = 4-(3 2^(2/3) (1+i sqrt(3)))/(17+i sqrt(143))^(1/3)-((1-i > sqrt(3)) (17+i sqrt(143))^(1/3))/2^(2/3) > > > And below that, there is "mathematica plaintext output": > > {Root[12 + 12 #1 - 12 #1^2 + #1^3 & , 3, 0], Root[12 + 12 #1 - 12 #1^2 > + #1^3 & , 2, 0], Root[12 + 12 #1 - 12 #1^2 + #1^3 & , 1, 0]} > > > Ok, it is obviously some plaintext output of result, but how one can > deal with it in mathematica? > > Thanks > > -- > ne vesele mene bez vas > utakmice nedjeljom > > >
- References:
- Mathematica plaintext output
- From: nevjernik <hajde.da@mijenjamo.planetu>
- Mathematica plaintext output