Re: Re: May we trust IntegerQ ?
- To: mathgroup at smc.vnet.net
- Subject: [mg107536] Re: [mg107504] Re: [mg107488] May we trust IntegerQ ?
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 16 Feb 2010 03:53:11 -0500 (EST)
- Reply-to: hanlonr at cox.net
Use FullSimplify in this case Table[IntegerQ[ FullSimplify[ 1/2 (x - Sqrt[-1 + x^2])^(2 x) + 1/2 (x + Sqrt[-1 + x^2])^(2 x)]], {x, 0, 10}] {True,True,True,True,True,True,True,True,True,True,True} Bob Hanlon ---- Artur <grafix at csl.pl> wrote: ============= Dear Daniel, What to do in following case: Table[IntegerQ[FunctionExpand[1/2 (x - Sqrt[-1 + x^2])^(2 x) + 1/2 (x + Sqrt[-1 + x^2])^(2 x)]], {x, 0, 10}] Best wishes Artur danl at wolfram.com pisze: >> Procedure: find such x that ChebyshevT[x/2, x] isn't integer >> aa = {}; Do[ If[IntegerQ[ChebyshevT[x/2, x]], , AppendTo[aa, x]], {x, 0, >> 20}]; aa >> and answer Mathematica is set: >> {3, 5, 7, 9, 11, 13, 15, 17, 19} >> where occered e.g. number 7 >> N[ChebyshevT[7/2, 7],100] >> 5042.00000000000000000000000000000000000000000000000000000000000000000\ >> 0000000000000000000000000000000 >> evidently is integer 5042 >> Some comments ? >> >> Best wishes >> Artur >> > > Trust IntegerQ? Mais oui. > > Documentation Center entry for IntegerQ, first item under More Information: > > "IntegerQ[expr] returns False unless expr is manifestly an integer (i.e., > has head Integer)." > > Example: > In[16]:= IntegerQ[Sin[3]^2 + Cos[3]^2] > Out[16]= False > > For your example, it might be better to use > FunctionExpand[ChebyshevT[x/2,x]]. Then try to figure out which cases > involving half-integer powers (Puiseux polynomials) will still evaluate to > integers. > > Daniel Lichtblau > Wolfram Research
- Follow-Ups:
- Re: Re: Re: May we trust IntegerQ ?
- From: Andrzej Kozlowski <akozlowski@gmail.com>
- Re: Re: Re: May we trust IntegerQ ?