Re: Re: May we trust IntegerQ ?
- To: mathgroup at smc.vnet.net
- Subject: [mg107582] Re: [mg107504] Re: [mg107488] May we trust IntegerQ ?
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Thu, 18 Feb 2010 05:16:21 -0500 (EST)
- Reply-to: hanlonr at cox.net
As recommended by Andrzej Kozlowski in this thread, use Element to test And @@ Table[ FullSimplify[ Element[ (-1/2 (x - Sqrt[-1 + x^2])^(2 x) + 1/2 (x + Sqrt[-1 + x^2])^(2 x))^2, Integers]], {x, 0, 20}] True Bob Hanlon ---- Artur <grafix at csl.pl> wrote: ============= Dear Bob, Your procedure do full simplify only up to index x=7 (and not from 8 and up) Table[FullSimplify[(-1/2 (x - Sqrt[-1 + x^2])^(2 x) + 1/2 (x + Sqrt[-1 + x^2])^(2 x))^2], {x, 0, 10}] Do you know what to do more ? Best wishes Artur Bob Hanlon pisze: > Use FullSimplify in this case > > Table[IntegerQ[ > FullSimplify[ > 1/2 (x - Sqrt[-1 + x^2])^(2 x) + 1/2 (x + Sqrt[-1 + x^2])^(2 x)]], {x, 0, > 10}] > > {True,True,True,True,True,True,True,True,True,True,True} > > > Bob Hanlon > > ---- Artur <grafix at csl.pl> wrote: > > ============= > Dear Daniel, > What to do in following case: > Table[IntegerQ[FunctionExpand[1/2 (x - Sqrt[-1 + x^2])^(2 x) + 1/2 (x + > Sqrt[-1 + x^2])^(2 x)]], {x, 0, 10}] > Best wishes > Artur > > > danl at wolfram.com pisze: > >>> Procedure: find such x that ChebyshevT[x/2, x] isn't integer >>> aa = {}; Do[ If[IntegerQ[ChebyshevT[x/2, x]], , AppendTo[aa, x]], {x, 0, >>> 20}]; aa >>> and answer Mathematica is set: >>> {3, 5, 7, 9, 11, 13, 15, 17, 19} >>> where occered e.g. number 7 >>> N[ChebyshevT[7/2, 7],100] >>> 5042.00000000000000000000000000000000000000000000000000000000000000000\ >>> 0000000000000000000000000000000 >>> evidently is integer 5042 >>> Some comments ? >>> >>> Best wishes >>> Artur >>> >>> >> Trust IntegerQ? Mais oui. >> >> Documentation Center entry for IntegerQ, first item under More Information: >> >> "IntegerQ[expr] returns False unless expr is manifestly an integer (i.e., >> has head Integer)." >> >> Example: >> In[16]:= IntegerQ[Sin[3]^2 + Cos[3]^2] >> Out[16]= False >> >> For your example, it might be better to use >> FunctionExpand[ChebyshevT[x/2,x]]. Then try to figure out which cases >> involving half-integer powers (Puiseux polynomials) will still evaluate to >> integers. >> >> Daniel Lichtblau >> Wolfram Research >>
- Follow-Ups:
- Re: Re: Re: May we trust IntegerQ
- From: Artur <grafix@csl.pl>
- Re: Re: Re: May we trust IntegerQ