Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Re: algebraic numbers

  • To: mathgroup at smc.vnet.net
  • Subject: [mg106129] Re: [mg106080] Re: algebraic numbers
  • From: DrMajorBob <btreat1 at austin.rr.com>
  • Date: Sat, 2 Jan 2010 05:05:46 -0500 (EST)
  • References: <hhc7a1$2o2$1@smc.vnet.net> <200912300912.EAA17052@smc.vnet.net>
  • Reply-to: drmajorbob at yahoo.com

When I clicked on the link below, the search field was already filled with  
the sequence

target = {1, 2, 3, 6, 11, 23, 47, 106, 235};

Searching yielded "A000055		Number of trees with n unlabeled nodes."

I tried a few Mathematica functions on it:

FindLinearRecurrence@target

FindLinearRecurrence[{1, 2, 3, 6, 11, 23, 47, 106, 235}]

(fail)

FindSequenceFunction@target

FindSequenceFunction[{1, 2, 3, 6, 11, 23, 47, 106, 235}]

(fail)

f[x_] = InterpolatingPolynomial[target, x]

1 + (1 + (1/
        3 + (-(1/
            12) + (7/
              120 + (-(1/
                  60) + (1/144 - (41 (-8 + x))/20160) (-7 + x)) (-6 +
                 x)) (-5 + x)) (-4 + x)) (-3 + x) (-2 + x)) (-1 + x)

and now the next term:

Array[f, 1 + Length@target]

{1, 2, 3, 6, 11, 23, 47, 106, 235, 322}

But, unsurprisingly, the next term in A000055 is 551, not 322.

A000055 actually starts with another three 1s, but that doesn't change  
things much:


target = {1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235};

FindLinearRecurrence@target

FindLinearRecurrence[{1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235}]

(fail)

FindSequenceFunction@target

FindSequenceFunction[{1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235}]

(fail)

f[x_] = InterpolatingPolynomial[target, x]

1 + (1/24 + (-(1/
         40) + (1/
           90 + (-(1/
               280) + (1/
                 1008 + (-(43/
                     181440) + (191/3628800 - (437 (-11 + x))/
                     39916800) (-10 + x)) (-9 + x)) (-8 + x)) (-7 +
              x)) (-6 + x)) (-5 + x)) (-4 + x) (-3 + x) (-2 + x) (-1 +
     x)

Array[f, 1 + Length@target]

{1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, -502}

So I ask you, from the data alone: what's the next term?

If one had the Encyclopedia of Integer Sequences handy, those SAT  
questions could be interesting. But they'd still be nonsense.

Bobby

On Fri, 01 Jan 2010 04:32:58 -0600, Noqsi <jpd at noqsi.com> wrote:

> On Dec 31, 1:16 am, DrMajorBob <btre... at austin.rr.com> wrote:
>
>> This is a little like those idiotic SAT and GRE questions that ask  
>> "What's
>> the next number in the following series?"... where any number will do.
>> Test writers don't seem to know there's an interpolating polynomial (for
>> instance) to fit the given series with ANY next element.
>
> Explanations in terms of epicycles may be mathematically adequate in a
> narrow sense, but an explanation in terms of a single principle
> applied repeatedly is to be preferred in science. The ability to
> recognize such a principle is important.
>
> And my mathematical logician son (who's looking over my shoulder)
> directed me to http://www.research.att.com/~njas/sequences/ for
> research on this topic. When he encounters such a sequence in his
> research, he finds that knowledge of a simple genesis for the sequence
> can lead to further insight.
>


-- 
DrMajorBob at yahoo.com


  • Prev by Date: Re: Database Challenge
  • Next by Date: Re: Database Challenge
  • Previous by thread: Re: Re: Re: algebraic numbers
  • Next by thread: Re: algebraic numbers