Re: restricting interpolating functions to be positive
- To: mathgroup at smc.vnet.net
- Subject: [mg106519] Re: restricting interpolating functions to be positive
- From: schochet123 <schochet123 at gmail.com>
- Date: Fri, 15 Jan 2010 03:18:54 -0500 (EST)
- References: <higdjs$kfi$1@smc.vnet.net> <201001131058.FAA06854@smc.vnet.net>
On Jan 14, 12:46 pm, DrMajorBob <btre... at austin.rr.com> wrote: > For some data, that works pretty well; for other samples it has HUGE > peaks, reaching far above any of the data: This problem can be avoided by using a transformation that is close to the identity for positive values: trans[x_]=(Sqrt[1 + x^2] + x)/2 inv[y_]=(4 y^2 - 1)/(4 y) Simplify[{trans[inv[y]], inv[trans[x]]}, y > 0] To compare the effects of this new transformation with the old one, modify the test code slightly: tryinterp := (data = Sort at RandomReal[{0.1, 1}, {20, 2}]; {min, max} = data[[{1, -1}, 1]]; f = Interpolation@data; logdata = data /. {x_, y_} -> {x, Log[y]}; invdata = data /. {x_, y_} -> {x, inv[y]}; expinterp = Exp[Interpolation[logdata]@#] &; transinterp = trans[Interpolation[data]@#] &; plota = Plot[Evaluate@Through[{f, expinterp}@x], {x, min, max}, PlotRange -> All]; plotb = Plot[Evaluate@Through[{f, transinterp}@x], {x, min, max}, PlotRange -> All]; GraphicsRow[{plota, plotb}]) Now evaluate tryinterp several times Steve > > data = Sort at RandomReal[{0.1, 1}, {20, 2}]; > {min, max} = data[[{1, -1}, 1]] > f = Interpolation@data; > logdata = data /. {x_, y_} -> {x, Log[y]}; > interp = Exp[Interpolation[logdata]@#] &; > Show[Plot[Evaluate@Through[{f, interp}@x], {x, min, max}, > PlotRange -> All]] > > (run it several times) >
- References:
- Re: restricting interpolating functions to be positive
- From: Noqsi <jpd@noqsi.com>
- Re: restricting interpolating functions to be positive