Services & Resources / Wolfram Forums / MathGroup Archive

MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive


Dear Mathematica Gurus!

Who know how to execute SymbolicPolynomialMod
PolynomialMod working only on numbers (not for symbols)

If we know that a,b,c,d,f are five roots of general quintic polynomial 
X^5+t X^4+p X^3+q X^2+r X+s==0

Then we can do SymbolicPolynomialMod of g (manually not by Mathemathica 

g=(a^6 b^7 c^5 d^2 + a^7 b^5 c^6 d^2 + a^5 b^6 c^7 d^2 +
 a^7 b^6 c^2 d^5 + a^2 b^7 c^6 d^5 + a^6 b^2 c^7 d^5 +
 a^5 b^7 c^2 d^6 + a^7 b^2 c^5 d^6 + a^2 b^5 c^7 d^6 +
 a^6 b^5 c^2 d^7 + a^2 b^6 c^5 d^7 + a^5 b^2 c^6 d^7 -
 a^6 b^8 c^3 d^2 f - a^8 b^3 c^6 d^2 f - a^3 b^6 c^8 d^2 f -
 a^8 b^6 c^2 d^3 f - a^2 b^8 c^6 d^3 f - a^6 b^2 c^8 d^3 f -
 a^3 b^8 c^2 d^6 f - a^8 b^2 c^3 d^6 f - a^2 b^3 c^8 d^6 f -
 a^6 b^3 c^2 d^8 f - a^2 b^6 c^3 d^8 f - a^3 b^2 c^6 d^8 f +
 a^7 b^6 c^5 f^2 + a^5 b^7 c^6 f^2 + a^6 b^5 c^7 f^2 -
 a^8 b^6 c^3 d f^2 - a^3 b^8 c^6 d f^2 - a^6 b^3 c^8 d f^2 -
 a^6 b^8 c d^3 f^2 - a^8 b c^6 d^3 f^2 - a b^6 c^8 d^3 f^2 +
 a^6 b^7 d^5 f^2 + a^7 c^6 d^5 f^2 + b^6 c^7 d^5 f^2 +
 a^7 b^5 d^6 f^2 - a^8 b^3 c d^6 f^2 - a b^8 c^3 d^6 f^2 +
 b^7 c^5 d^6 f^2 + a^5 c^7 d^6 f^2 - a^3 b c^8 d^6 f^2 +
 a^5 b^6 d^7 f^2 + a^6 c^5 d^7 f^2 + b^5 c^6 d^7 f^2 -
 a^3 b^6 c d^8 f^2 - a^6 b c^3 d^8 f^2 - a b^3 c^6 d^8 f^2 -
 a^6 b^8 c^2 d f^3 - a^8 b^2 c^6 d f^3 - a^2 b^6 c^8 d f^3 -
 a^8 b^6 c d^2 f^3 - a b^8 c^6 d^2 f^3 - a^6 b c^8 d^2 f^3 -
 a^2 b^8 c d^6 f^3 - a^8 b c^2 d^6 f^3 - a b^2 c^8 d^6 f^3 -
 a^6 b^2 c d^8 f^3 - a b^6 c^2 d^8 f^3 - a^2 b c^6 d^8 f^3 +
 a^6 b^7 c^2 f^5 + a^7 b^2 c^6 f^5 + a^2 b^6 c^7 f^5 +
 a^7 b^6 d^2 f^5 + b^7 c^6 d^2 f^5 + a^6 c^7 d^2 f^5 +
 a^2 b^7 d^6 f^5 + a^7 c^2 d^6 f^5 + b^2 c^7 d^6 f^5 +
 a^6 b^2 d^7 f^5 + b^6 c^2 d^7 f^5 + a^2 c^6 d^7 f^5 +
 a^7 b^5 c^2 f^6 + a^2 b^7 c^5 f^6 + a^5 b^2 c^7 f^6 -
 a^8 b^3 c^2 d f^6 - a^2 b^8 c^3 d f^6 - a^3 b^2 c^8 d f^6 +
 a^5 b^7 d^2 f^6 - a^3 b^8 c d^2 f^6 - a^8 b c^3 d^2 f^6 +
 a^7 c^5 d^2 f^6 + b^5 c^7 d^2 f^6 - a b^3 c^8 d^2 f^6 -
 a^8 b^2 c d^3 f^6 - a b^8 c^2 d^3 f^6 - a^2 b c^8 d^3 f^6 +
 a^7 b^2 d^5 f^6 + b^7 c^2 d^5 f^6 + a^2 c^7 d^5 f^6 +
 a^2 b^5 d^7 f^6 + a^5 c^2 d^7 f^6 + b^2 c^5 d^7 f^6 -
 a^2 b^3 c d^8 f^6 - a^3 b c^2 d^8 f^6 - a b^2 c^3 d^8 f^6 +
 a^5 b^6 c^2 f^7 + a^6 b^2 c^5 f^7 + a^2 b^5 c^6 f^7 +
 a^6 b^5 d^2 f^7 + b^6 c^5 d^2 f^7 + a^5 c^6 d^2 f^7 +
 a^2 b^6 d^5 f^7 + a^6 c^2 d^5 f^7 + b^2 c^6 d^5 f^7 +
 a^5 b^2 d^6 f^7 + b^5 c^2 d^6 f^7 + a^2 c^5 d^6 f^7 -
 a^3 b^6 c^2 d f^8 - a^6 b^2 c^3 d f^8 - a^2 b^3 c^6 d f^8 -
 a^6 b^3 c d^2 f^8 - a b^6 c^3 d^2 f^8 - a^3 b c^6 d^2 f^8 -
 a^2 b^6 c d^3 f^8 - a^6 b c^2 d^3 f^8 - a b^2 c^6 d^3 f^8 -
 a^3 b^2 c d^6 f^8 - a b^3 c^2 d^6 f^8 - a^2 b c^3 d^6 f^8)

by substitutions g/. {a^5->-t a^4-p a^3-q a^2-r a-s,b^5->-t b^4-p b^3-q 
b^2-r b-s,
c^5->-t c^4-p c^3-q c^2-r c-s,d^5->-t d^4-p d^3-q d^2-r d-s,f^5->-t 
f^4-p f^3-q f^2-r f-s}


How we can do full SymbolicPolynomialMod on the form g after such 
procedure will be not higher degree as 4 for a,b,c,d,f ?

Best wishes

  • Prev by Date: Re: More /.{I->-1} craziness
  • Next by Date: Bug in Notation palette for Mathematica v.7
  • Previous by thread: Re: Trouble with coupled quadratic equations where the
  • Next by thread: Re: SymbolicPolynomialMod