Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive

Can't solve :(

  • To: mathgroup at smc.vnet.net
  • Subject: [mg106757] Can't solve :(
  • From: olfa <olfa.mraihi at yahoo.fr>
  • Date: Sat, 23 Jan 2010 07:29:16 -0500 (EST)

Hello Mathematica Community,
Could you please help me to find a way to use reduce correctly in
order to be able to solve this system for the these unknown variables:
{aaP, alP, arP, brP, ccP, ddP, iP, jP, kP, lP, miP, pP, ppP, qP, rrP,
sP, vP, xP, xxP, zzP}


ar==arP&&
br==brP&&
k<=kP&&
j>=jP&&
x+1*i*(i+2)/(2*2)==xP+1*iP*(iP+2)/(2*2)&&
1*i+2*k==1*iP+2*kP&&
2*j-1*i==2*jP-1*iP&&
1*i-2*j==1*iP-2*jP&&
v/c^(i/-2)==vP/c^(iP/-2)&&
2*p-c*i==2*pP-c*iP&&
c*i-2*p==c*iP-2*pP&&
2*i+2*l==2*iP+2*lP&&
2*q-3*i==2*qP-3*iP&&
3*i-2*q==3*iP-2*qP&&
al/a^(i/-2)==alP/a^(iP/-2)&&
6*i+2*s==6*iP+2*sP&&
7*i+2*xx==7*iP+2*xxP&&
1*j+1*k==1*jP+1*kP&&
v/c^(k/1)==vP/c^(kP/1)&&
1*p+c*k==1*pP+c*kP&&
1*l-2*k==1*lP-2*kP&&
2*k-1*l==2*kP-1*lP&&
1*q+3*k==1*qP+3*kP&&
al/a^(k/1)==alP/a^(kP/1)&&
1*s-6*k==1*sP-6*kP&&
6*k-1*s==6*kP-1*sP&&
1*xx-7*k==1*xxP-7*kP&&
7*k-1*xx==7*kP-1*xxP&&
v/c^(j/-1)==vP/c^(jP/-1)&&
1*p-c*j==1*pP-c*jP&&
c*j-1*p==c*jP-1*pP&&
2*j+1*l==2*jP+1*lP&&
1*q-3*j==1*qP-3*jP&&
3*j-1*q==3*jP-1*qP&&
al/a^(j/-1)==alP/a^(jP/-1)&&
6*j+1*s==6*jP+1*sP&&
7*j+1*xx==7*jP+1*xxP&&
v/c^(p/-c)==vP/c^(pP/-c)&&
v/c^(l/2)==vP/c^(lP/2)&&
v/c^(q/-3)==vP/c^(qP/-3)&&
v/c^(s/6)==vP/c^(sP/6)&&
v/c^(xx/7)==vP/c^(xxP/7)&&
pp+4*p*(p+c)/(2*c)==ppP+4*pP*(pP+c)/(2*c)&&
2*p+c*l==2*pP+c*lP&&
c*q-3*p==c*qP-3*pP&&
3*p-c*q==3*pP-c*qP&&
al/a^(p/-c)==alP/a^(pP/-c)&&
6*p+c*s==6*pP+c*sP&&
7*p+c*xx==7*pP+c*xxP&&
2*q+3*l==2*qP+3*lP&&
al/a^(l/2)==alP/a^(lP/2)&&
2*s-6*l==2*sP-6*lP&&
6*l-2*s==6*lP-2*sP&&
2*xx-7*l==2*xxP-7*lP&&
7*l-2*xx==7*lP-2*xxP&&
zz-c*xx*(xx-7)/(2*7)==zzP-c*xxP*(xxP-7)/(2*7)&&
al/a^(q/-3)==alP/a^(qP/-3)&&
6*q+3*s==6*qP+3*sP&&
7*q+3*xx==7*qP+3*xxP&&
mi+e*al/(1-a)==miP+e*alP/(1-a)&&
al/a^(s/6)==alP/a^(sP/6)&&
al/a^(xx/7)==alP/a^(xxP/7)&&
rr-a*s*(s-6)/(2*6)==rrP-a*sP*(sP-6)/(2*6)&&
6*xx-7*s==6*xxP-7*sP&&
7*s-6*xx==7*sP-6*xxP&&
aa+Sum[ar[k],{k,k,N}]==aaP+Sum[arP[k],{k,kP,N}]&&
cc+Sum[ar[k],{k,k+1,N}]==ccP+Sum[arP[k],{k,kP+1,N}]&&
dd+Sum[br[k],{k,1,j-1}]==ddP+Sum[brP[k],{k,1,jP-1}]&&
Not[(iP>0)]&&
Exists
[ {aaPP,alPP,arPP,brPP,ccPP,ddPP,iPP,jPP,kPP,lPP,miPP,pPP,ppPP,qPP,rrPP,sPP,vPP,xPP,xxPP,zzPP},
(iPP>0)&&
xP==xPP+1*iPP&&
iP==iPP-2&&
arP==arPP&&
brP==brPP&&
aaP==aaPP+arPP[kPP]&&
kP==kPP+1&&
jP==jPP-1&&
ccP==ccPP+arPP[kPP+1]&&
ddP==ddPP+brPP[jPP-1]&&
vP==vPP*c&&
pP==pPP-c&&
ppP==ppPP+4*pPP&&
lP==lPP+2&&
zzP==zzPP+c*xxPP&&
qP==qPP-3&&
alP==alPP*a&&
miP==miPP+e*alPP&&
sP==sPP+6&&
rrP==rrPP+a*sPP&&
xxP==xxPP+7]

thank you very much.


  • Prev by Date: Re: Finding and changing strings in a matrix
  • Next by Date: Re: Re: More /.{I->-1} craziness
  • Previous by thread: Re: DynamicModule not saving reliably a variable between
  • Next by thread: simple question for mathematica tool