Can't solve :(
- To: mathgroup at smc.vnet.net
- Subject: [mg106757] Can't solve :(
- From: olfa <olfa.mraihi at yahoo.fr>
- Date: Sat, 23 Jan 2010 07:29:16 -0500 (EST)
Hello Mathematica Community, Could you please help me to find a way to use reduce correctly in order to be able to solve this system for the these unknown variables: {aaP, alP, arP, brP, ccP, ddP, iP, jP, kP, lP, miP, pP, ppP, qP, rrP, sP, vP, xP, xxP, zzP} ar==arP&& br==brP&& k<=kP&& j>=jP&& x+1*i*(i+2)/(2*2)==xP+1*iP*(iP+2)/(2*2)&& 1*i+2*k==1*iP+2*kP&& 2*j-1*i==2*jP-1*iP&& 1*i-2*j==1*iP-2*jP&& v/c^(i/-2)==vP/c^(iP/-2)&& 2*p-c*i==2*pP-c*iP&& c*i-2*p==c*iP-2*pP&& 2*i+2*l==2*iP+2*lP&& 2*q-3*i==2*qP-3*iP&& 3*i-2*q==3*iP-2*qP&& al/a^(i/-2)==alP/a^(iP/-2)&& 6*i+2*s==6*iP+2*sP&& 7*i+2*xx==7*iP+2*xxP&& 1*j+1*k==1*jP+1*kP&& v/c^(k/1)==vP/c^(kP/1)&& 1*p+c*k==1*pP+c*kP&& 1*l-2*k==1*lP-2*kP&& 2*k-1*l==2*kP-1*lP&& 1*q+3*k==1*qP+3*kP&& al/a^(k/1)==alP/a^(kP/1)&& 1*s-6*k==1*sP-6*kP&& 6*k-1*s==6*kP-1*sP&& 1*xx-7*k==1*xxP-7*kP&& 7*k-1*xx==7*kP-1*xxP&& v/c^(j/-1)==vP/c^(jP/-1)&& 1*p-c*j==1*pP-c*jP&& c*j-1*p==c*jP-1*pP&& 2*j+1*l==2*jP+1*lP&& 1*q-3*j==1*qP-3*jP&& 3*j-1*q==3*jP-1*qP&& al/a^(j/-1)==alP/a^(jP/-1)&& 6*j+1*s==6*jP+1*sP&& 7*j+1*xx==7*jP+1*xxP&& v/c^(p/-c)==vP/c^(pP/-c)&& v/c^(l/2)==vP/c^(lP/2)&& v/c^(q/-3)==vP/c^(qP/-3)&& v/c^(s/6)==vP/c^(sP/6)&& v/c^(xx/7)==vP/c^(xxP/7)&& pp+4*p*(p+c)/(2*c)==ppP+4*pP*(pP+c)/(2*c)&& 2*p+c*l==2*pP+c*lP&& c*q-3*p==c*qP-3*pP&& 3*p-c*q==3*pP-c*qP&& al/a^(p/-c)==alP/a^(pP/-c)&& 6*p+c*s==6*pP+c*sP&& 7*p+c*xx==7*pP+c*xxP&& 2*q+3*l==2*qP+3*lP&& al/a^(l/2)==alP/a^(lP/2)&& 2*s-6*l==2*sP-6*lP&& 6*l-2*s==6*lP-2*sP&& 2*xx-7*l==2*xxP-7*lP&& 7*l-2*xx==7*lP-2*xxP&& zz-c*xx*(xx-7)/(2*7)==zzP-c*xxP*(xxP-7)/(2*7)&& al/a^(q/-3)==alP/a^(qP/-3)&& 6*q+3*s==6*qP+3*sP&& 7*q+3*xx==7*qP+3*xxP&& mi+e*al/(1-a)==miP+e*alP/(1-a)&& al/a^(s/6)==alP/a^(sP/6)&& al/a^(xx/7)==alP/a^(xxP/7)&& rr-a*s*(s-6)/(2*6)==rrP-a*sP*(sP-6)/(2*6)&& 6*xx-7*s==6*xxP-7*sP&& 7*s-6*xx==7*sP-6*xxP&& aa+Sum[ar[k],{k,k,N}]==aaP+Sum[arP[k],{k,kP,N}]&& cc+Sum[ar[k],{k,k+1,N}]==ccP+Sum[arP[k],{k,kP+1,N}]&& dd+Sum[br[k],{k,1,j-1}]==ddP+Sum[brP[k],{k,1,jP-1}]&& Not[(iP>0)]&& Exists [ {aaPP,alPP,arPP,brPP,ccPP,ddPP,iPP,jPP,kPP,lPP,miPP,pPP,ppPP,qPP,rrPP,sPP,vPP,xPP,xxPP,zzPP}, (iPP>0)&& xP==xPP+1*iPP&& iP==iPP-2&& arP==arPP&& brP==brPP&& aaP==aaPP+arPP[kPP]&& kP==kPP+1&& jP==jPP-1&& ccP==ccPP+arPP[kPP+1]&& ddP==ddPP+brPP[jPP-1]&& vP==vPP*c&& pP==pPP-c&& ppP==ppPP+4*pPP&& lP==lPP+2&& zzP==zzPP+c*xxPP&& qP==qPP-3&& alP==alPP*a&& miP==miPP+e*alPP&& sP==sPP+6&& rrP==rrPP+a*sPP&& xxP==xxPP+7] thank you very much.