Re: sum done two ways gives different answers in
- To: mathgroup at smc.vnet.net
- Subject: [mg106829] Re: [mg106788] sum done two ways gives different answers in
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 24 Jan 2010 05:43:08 -0500 (EST)
- Reply-to: hanlonr at cox.net
I get the same result both ways. $Version 7.0 for Mac OS X x86 (64-bit) (February 19, 2009) expr1 = Sum[1/(((-1)^(-I)*2)^n*(n + 1)), {n, 0, Infinity}] // Simplify (-2*Log[1 - (-1)^I/2])/(-1)^I expr1 // N 1.01096 expr2 = ComplexExpand[ 1/(((-1)^(-I)*2)^n*(n + 1))] // Simplify // Quiet E^(Pi*(-n))/(2^n*(n + 1)) expr3 = Sum[expr2, {n, 0, Infinity}] // Simplify -2*E^Pi*Log[1 - 1/(E^Pi*2)] expr1 == expr3 // FullSimplify True N[expr3] 1.01096 Bob Hanlon ---- Roger Bagula <roger.bagula at gmail.com> wrote: ============= The sum: Sum[1/(((-1)^(-I)*2)^n*(n + 1)), {n, 0, Infinity}] gives: -2*(-1)^(-I)*Log[1-(-1)^I/2] N[%]=1.010902 ComplexExpand[1/(((-1)^(-I)*2)^n*(n + 1))] gives 2^(-n)*Exp[-n*Pi]/(1+n) with Infinite sum: Sum[2^(-n)*Exp[-n*Pi]/(1+n), {n, 0, Infinity}] -2*Exp[Pi]*Log[1-Exp[-Pi]/2] N[%]=0.010902 I thought this result was both interesting and puzzling. This idea comes from: Solve[Exp[I*Pi] - Exp[I*Log[x]] == 0, x] {{x -> (-1)^(-I))}} I thought that it might give something related to Pi in an Infinite sum. -- Respectfully, Roger L. Bagula 11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : http://www.google.com/profiles/Roger.Bagula alternative email: roger.bagula at gmail.com