Re: Re: The formula of Abraham Moivre
- To: mathgroup at smc.vnet.net
- Subject: [mg106865] Re: [mg106808] Re: The formula of Abraham Moivre
- From: Andrzej Kozlowski <akozlowski at gmail.com>
- Date: Mon, 25 Jan 2010 05:08:24 -0500 (EST)
- References: <hjeqep$g0p$1@smc.vnet.net> <201001241039.FAA27566@smc.vnet.net>
On 24 Jan 2010, at 11:39, Sjoerd C. de Vries wrote: > Hi Arnold, > > ExpToTrig[PowerExpand[FullSimplify[(Cos[x] + I*Sin[x])^n]]] > > but this is actually only true for n integer OR x positive reals. Actually, it's true for any n (so all those assumptions Element[n,Integers] various people have posted are not needed). For example: FullSimplify[ ComplexExpand[(Cos[x] + I*Sin[x])^(3/2), TargetFunctions -> {Re, Im, Abs}], -Pi < x <= Pi] // ExpToTrig cos((3 x)/2)+I sin((3 x)/2) Is quite correct as is FullSimplify[ ComplexExpand[(Cos[x] + I*Sin[x])^(I), TargetFunctions -> {Re, Im, Abs}], -Pi < x <= Pi] // ExpToTrig cosh(x)-sinh(x) In full generality: FullSimplify[ ComplexExpand[(Cos[x] + I*Sin[x])^n, TargetFunctions -> {Re, Im, Abs}], -Pi < x <= Pi] // ExpToTrig cos(n x)+I sin(n x) Andrzej Kozlowski > > Cheers -- Sjoed > > On Jan 23, 2:35 pm, Arnold <sender999s... at gmail.com> wrote: >> How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos[n*x] +I*Sin [n*x]? >> >> Thanks. > >
- References:
- Re: The formula of Abraham Moivre
- From: "Sjoerd C. de Vries" <sjoerd.c.devries@gmail.com>
- Re: The formula of Abraham Moivre