Re: Inverse trigonometrical functions
- To: mathgroup at smc.vnet.net
- Subject: [mg106890] Re: [mg106857] Inverse trigonometrical functions
- From: Andrzej Kozlowski <akozlowski at gmail.com>
- Date: Tue, 26 Jan 2010 06:35:01 -0500 (EST)
- References: <201001251006.FAA09293@smc.vnet.net>
On 25 Jan 2010, at 11:06, Arnold wrote: > How by means of Mathematica to transform = ArcSin[x*Sqrt(1-y^2)-y*Sqrt(1-x^2)] in ArcSin[x]-ArcSin[y]? > Note that: TrigExpand[Sin[ArcSin[x] - ArcSin[y]]] x*Sqrt[1 - y^2] - Sqrt[1 - x^2]*y That means that x*Sqrt[1 - y^2] - Sqrt[1 - x^2]*y == ArcSin[x*Sqrt[1 - y^2] - Sqrt[1 - x^2]*y] provided Abs[ArcSin[x] - ArcSin[y]]<=Pi/2 (assuming both x and y are reals between -1 and 1). To see some examples, let eq = ArcSin[x*Sqrt[1 - y^2] - y*Sqrt[1 - x^2]] == ArcSin[x] - ArcSin[y]; then eq /. {x -> 1, y -> -1} False eq /. {x -> 1, y -> 0} True Andrzej Kozlowski
- References:
- Inverse trigonometrical functions
- From: Arnold <sender999ster@gmail.com>
- Inverse trigonometrical functions