Re: NDsolve problem
- To: mathgroup at smc.vnet.net
- Subject: [mg110721] Re: NDsolve problem
- From: Peter Pein <petsie at dordos.net>
- Date: Sat, 3 Jul 2010 08:18:39 -0400 (EDT)
- References: <i0kif0$183$1@smc.vnet.net>
Am Fri, 2 Jul 2010 11:27:28 +0000 (UTC) schrieb "ntina.86 at libero.it" <ntina.86 at libero.it>: > Hello, > I haven't been using Mathematica for some years and now I need to ask > you for help with NDSolve. > I'm using version 6.0. > > I want to solve the radial Schrodinger equation with a Yukawa > potential, and I started trying to solve this: > > a = 500 > b = 10; > s = NDSolve[{y''[x] + (2/x) y'[x] + (1 + (2*a/x)*E^(-b*x)) (y[x]) == > 0, y [0.000001] == 1, y'[0.000001] == -a}, y, {x, 0.000001, > 60},PrecisionGoal -> \ [Infinity], MaxSteps -> Infinity] > > This gives me results that might be correct, but the problem comes > when I try to plot: > > Plot[Evaluate[(x*y[x])^2 + (((x - 0.5 Pi)*y[x - 0.5 > Pi]))^2 /.s[[1]]], {x, 10, 60}, PlotRange -> All] > > It should be a constant (i.e. the sum of the square of a cosine and > of a sine, which is the solution of the Schrod.) at least for x>10, > instead I get a badly oscillating function. > > Is it a problem of the method of integration or I'm doing something > wrong? I tried to change it, using ExplicitRK or the > SymplecticPartitionedRK, but the latter gives me these errors: > > > --------------------------------------------------------------------------------------------------------- > NDSolve::nlnum1: The function value {-21065.3 (1.23594*10^7+82.8327 \ > TemporaryVariable[2][1.1462*10^-6])} is not a list of numbers with \ > dimensions {1} when the arguments are {1.1462*10^-6,0.494377}. > > InterpolatingFunction::dmval: Input value {28.4292} lies outside the \ > range of data in the interpolating function. Extrapolation will be \ > used. >> > > InterpolatingFunction::dmval: Input value {30} lies outside the range > \ of data in the interpolating function. Extrapolation will be used. > >> > > NDSolve::nlnum1: The function value {-21193.5 (1.23496*10^7+82.3232 \ > TemporaryVariable[2][1.14631*10^-6])} is not a list of numbers with \ > dimensions {1} when the arguments are {1.14631*10^-6,0.493983}. > > InterpolatingFunction::dmval: Input value {28.4292} lies outside the \ > range of data in the interpolating function. Extrapolation will be \ > used. >> > > General::stop: Further output of InterpolatingFunction::dmval will be > \ suppressed during this calculation. >> > > NDSolve::nlnum1: The function value {-21321.9 (1.23397*10^7+81.8195 \ > TemporaryVariable[2][1.14643*10^-6])} is not a list of numbers with \ > dimensions {1} when the arguments are {1.14643*10^-6,0.493589}. > > General::stop: Further output of NDSolve::nlnum1 will be suppressed \ > during this calculation. >> > > > ------------------------------------------------------------------------------------------------------- > > > Thank you in advance. > Regards, > Valentina > > > Hi Valentina, it's strange. With Mathematica 7 but without the Options for NIntegrate, I get a plot-function which is (almost) constant a little bit below 1/1000: In[1]:= a=500; b=10; \[CurlyEpsilon]=10^-6; s=NDSolve[{y''[x]+(2/x) y'[x]+(1+(2*a/x)*E^(-b*x)) (y[x])==0,y[\[CurlyEpsilon]]==1,y'[\[CurlyEpsilon]]==-a},y,{x,\[CurlyEpsilon],60}]; In[5]:= Plot[Evaluate[(x*y[x])^2+(((x-0.5 Pi)*y[x-0.5 Pi]))^2/.s[[1]]],{x,\[CurlyEpsilon]+Pi/2,60},PlotRange->All] (* see: http://dl.dropbox.com/u/3030567/Mathematica/schroed.png *) In[6]:= Evaluate[(x*y[x])^2+(((x-0.5 Pi)*y[x-0.5 Pi]))^2/.s[[1]]]/.x->{10,60} Out[6]= {0.0000979763,0.0000976444} does that help? Peter