I am posting the problem once more

*To*: mathgroup at smc.vnet.net*Subject*: [mg110876] I am posting the problem once more*From*: pratip <pratip.chakraborty at gmail.com>*Date*: Sat, 10 Jul 2010 03:58:43 -0400 (EDT)

Dear Group, Here is a simple code to solve linear systems. It is motivated from Fullerton University numerics example. Now if someone can suggest how to parallelize this code. SORmethod[A0_, B0_, P0_, omega_, max_] := Module[{A = N[A0], B = N[B0], i, j, k = 0, n = Length[P0], P = P0, oldP = P0}, While[ k < max, Do[P[[i]] = (1 - omega) oldP[[i]] + omega/A[[i, i]] (B[[i]] - Sum[A[[i, j]] P[[j]], {j, 1, i - 1}] - Sum[A[[i, j]] oldP[[j]], {j, 1 + i, n}]) , {i, 1, n}]; oldP = P; k = k + 1; ]; Return[P] ] To test the solver. n = 10; A = DiagonalMatrix[Table[2., {n}]]; For[i = 1, i <= n - 1, i++, A[[i, i + 1]] = A[[i + 1, i]] = 1.;]; B = Table[5. - Abs[i - 5], {i, 1, n}]; P = Table[1., {i, n}]; X3 = SORmethod[A, B, P, 1.5, 200] // Chop Check the above result with Mathematica LinearSolve LinearSolve[A, B] // N Straightforward ParallelDo or ParallelSum is not working. One can see for large n (abt 400-14000) we will significantly get help if we can parallize the code. Best regards, Pratip