Re: Harmonic Numbers
- To: mathgroup at smc.vnet.net
- Subject: [mg107906] Re: [mg107881] Harmonic Numbers
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 2 Mar 2010 07:53:54 -0500 (EST)
- Reply-to: hanlonr at cox.net
$Version 7.0 for Mac OS X x86 (64-bit) (February 19, 2009) s = Sum[k/((k^2 + 1) (k^2 + 4)), {k, 1, Infinity}] (-(1/2))*RootSum[#1^4 + 4*#1^3 + 11*#1^2 + 14*#1 + 10 & , PolyGamma[0, -#1]/(2*#1^2 + 4*#1 + 7) & ] s // N // Chop 0.206647 s // ToRadicals // Simplify (1/6)*(-PolyGamma[0, 1 - I] - PolyGamma[0, 1 + I] + PolyGamma[0, 1 - 2*I] + PolyGamma[0, 1 + 2*I]) % // N // Chop 0.206647 s // ToRadicals // FullSimplify (1/6)*(-HarmonicNumber[-I] - HarmonicNumber[I] + HarmonicNumber[-2*I] + HarmonicNumber[2*I]) % // N // Chop 0.206647 NSum[k/((k^2 + 1) (k^2 + 4)), {k, 1, Infinity}] 0.206647 Bob Hanlon ---- "Chris H. Fleming" <chris_h_fleming at yahoo.com> wrote: ============= Sum[k/((k^2 + 1) (k^2 + 4)), {k, 1, \[Infinity]}] Sum does not converge. NSum[k/((k^2 + 1) (k^2 + 4)), {k, 1, \[Infinity]}] 0.206647 Fortunately I know how to do this sum by hand, but Mathematica can usually handle these Harmonic number functions pretty well. Does anyone know a way of massaging this into a form Mathematica can digest?