Re: Re: Shading in polar plot
- To: mathgroup at smc.vnet.net
- Subject: [mg107926] Re: [mg107883] Re: Shading in polar plot
- From: "David Park" <djmpark at comcast.net>
- Date: Wed, 3 Mar 2010 05:50:00 -0500 (EST)
- References: <hmg27q$sre$1@smc.vnet.net> <1680250.1267521052707.JavaMail.root@n11>
I like that, and learning from Helen I tried again with Presentations and came up with the following. We don't have to use thick lines if we turn off the BoundaryStyle to prevent double drawing. We don't need a RegionFunction if we work directly, and to me a little more intuitively, with the radius and reverse the iterators. And we need only one ParametricDraw if we Map it onto the angle iterators. Needs["Presentations`Master`"] r[t_] := Sqrt[3]; s[t_] := Sqrt[6 Cos[2 t]]; Draw2D[ {PolarDraw[{r[t], s[t]}, {t, 0, 2 Pi}], ParametricDraw[radius {Cos[t], Sin[t]}, #, {radius, r[t], s[t]}, Mesh -> None, BoundaryStyle -> None] & /@ {{t, -Pi/6, Pi/6}, {t, 5 Pi/6, 7 Pi/6}} }, ImageSize -> 400] David Park djmpark at comcast.net http://home.comcast.net/~djmpark/ From: Helen Read [mailto:hpr at together.net] On 3/1/2010 4:43 AM, Jon Joseph wrote: > All: I would like to shade the area outside of the circle Sqrt[3] and > inside the lemniscate r^2=6Cos[2 t]. Can this be done using PolarPlot > and mesh functions or is something else needed? > > PolarPlot[{Sqrt[3], Sqrt[6 Cos[2 t]], -Sqrt[6 Cos[2 t]]}, {t, 0, 2 Pi}] > > Shows the curves without the shading. Jon > ParametricPlot with a RegionFunction will do the job. r[t_] = Sqrt[3]; s[t_] = Sqrt[6 Cos[2 t]]; Solve[r[t] == s[t], t] (* to find where they intersect *) plot1 = PolarPlot[{r[t], s[t]}, {t, 0, 2 Pi}, PlotStyle -> Thick]; plot2 = ParametricPlot[{u s[t] Cos[t], u s[t] Sin[t]}, {u, 0, 1}, {t, -Pi/6, Pi/6}, RegionFunction -> Function[{x, y, u, t}, u s[t] > r[t]], Mesh -> None]; plot3 = ParametricPlot[{u s[t] Cos[t], u s[t] Sin[t]}, {u, 0, 1}, {t, 5 Pi/6, 7 Pi/6}, RegionFunction -> Function[{x, y, u, t}, u s[t] > r[t]], Mesh -> None]; Show[{plot1, plot2, plot3}, PlotRange -> Automatic] And actually, this will work, though it will complain about comparing s[t]>r[t] where the values are non-real: plot4 = PolarPlot[{r[t], s[t]}, {t, 0, 2 Pi}, PlotStyle -> Thick]; plot5 = ParametricPlot[{u s[t] Cos[t], u s[t] Sin[t]}, {u, 0, 1}, {t, 0, 2Pi}, RegionFunction -> Function[{x, y, u, t}, u s[t] > r[t]], Mesh -> None]; Show[{plot4, plot5}, PlotRange -> Automatic] -- Helen Read University of Vermont