Re: plot solution derivative
- To: mathgroup at smc.vnet.net
- Subject: [mg108258] Re: plot solution derivative
- From: dh <dh at metrohm.com>
- Date: Fri, 12 Mar 2010 07:08:11 -0500 (EST)
- References: <op.u9c2oxvv422244@toshiba> <hnakjb$5rr$1@smc.vnet.net>
Hi Beata, you may e.g. use Reduce to get the zeros of deriv2func: lines = t /. {Reduce[{deriv2func == 0, Element[t, Reals]}, t] // ToRules}; lines = Line[{{ #, -0.2}, {#, 0.2}}] & /@ lines; Plot[{deriv2func}, {t, First[First[date]], First[Last[date]]}, Frame -> True, GridLines -> Automatic, Epilog -> {Red, lines}] Danmiel On 11.03.2010 12:36, Beata WarchoÅ? wrote: > Dear Math Group, > > I need your help in this problem: > > I have date and function for example: > date= {{39814.`, 876.34`}, {39817.`, 859.91`}, {39818.`, > 864.55`}, {39819.`, 840.95`}, {39820.`, 853.95`}, {39821.`, > 856.52`}, {39824.`, 823.25`}, {39825.`, 821.24`}, {39826.`, > 810.06`}, {39827.`, 812.87`}, {39828.`, 839.28`}, {39831.`, > 836.`}, {39832.`, 852.53`}, {39833.`, 852.08`}, {39834.`, > 860.32`}, {39835.`, 895.88`}, {39838.`, 906.7`}, {39839.`, > 899.07`}, {39840.`, 890.05`}, {39841.`, 904.5`}, {39842.`, > 928.08`}, {39845.`, 904.93`}, {39846.`, 892.93`}, {39847.`, > 901.3`}, {39848.`, 913.9`}, {39849.`, 913.3`}, {39852.`, > 894.15`}, {39853.`, 913.1`}, {39854.`, 942.38`}, {39855.`, > 951.3`}, {39856.`, 939.76`}, {39859.`, 943.24`}, {39860.`, > 969.7`}, {39861.`, 980.11`}, {39862.`, 974.3`}, {39863.`, > 997.37`}, {39866.`, 993.84`}, {39867.`, 967.23`}, {39868.`, > 963.28`}, {39869.`, 938.99`}, {39870.`, 938.96`}, {39873.`, > 937.42`}, {39874.`, 913.28`}, {39875.`, 905.04`}, {39876.`, > 927.08`}, {39877.`, 940.1`}, {39880.`, 916.36`}, {39881.`, > 897.09`}, {39882.`, 906.94`}, {39883.`, 923.36`}, {39884.`, > 928.13`}, {39887.`, 922.62`}, {39888.`, 916.33`}, {39889.`, > 932.7`}, {39890.`, 956.68`}, {39891.`, 952.94`}, {39894.`, > 950.66`}, {39895.`, 929.5`}, {39896.`, 935.54`}, {39897.`, > 938.41`}, {39898.`, 922.8`}, {39901.`, 915.86`}, {39902.`, > 922.58`}, {39903.`, 925.`}, {39904.`, 906.56`}, {39905.`, > 895.91`}, {39908.`, 869.9`}, {39909.`, 882.11`}, {39910.`, > 883.84`}, {39911.`, 881.65`}, {39915.`, 891.4`}, {39916.`, > 890.6`}, {39917.`, 891.25`}, {39918.`, 878.05`}, {39919.`, > 866.59`}, {39922.`, 884.35`}, {39923.`, 881.05`}, {39924.`, > 891.3`}, {39925.`, 905.46`}, {39926.`, 911.8`}, {39929.`, > 907.14`}, {39930.`, 891.05`}, {39931.`, 899.57`}, {39932.`, > 890.85`}, {39933.`, 885.5`}, {39936.`, 901.7`}, {39937.`, > 901.92`}, {39938.`, 908.6`}, {39939.`, 910.88`}, {39940.`, > 914.65`}, {39943.`, 912.47`}, {39944.`, 922.93`}, {39945.`, > 926.1`}, {39946.`, 927.3`}, {39947.`, 928.3`}, {39950.`, > 920.17`}, {39951.`, 926.57`}, {39952.`, 938.68`}, {39953.`, > 951.45`}, {39954.`, 957.95`}, {39957.`, 957.8`}, {39958.`, > 952.9`}, {39959.`, 950.8`}, {39960.`, 959.44`}, {39961.`, > 975.92`}, {39964.`, 979.62`}, {39965.`, 980.9`}, {39966.`, > 963.36`}, {39967.`, 980.3`}, {39968.`, 960.82`}, {39971.`, > 950.4`}, {39972.`, 953.87`}, {39973.`, 948.86`}, {39974.`, > 959.3`}, {39975.`, 939.5`}, {39978.`, 927.06`}, {39979.`, > 932.56`}, {39980.`, 936.`}, {39981.`, 932.58`}, {39982.`, > 934.1`}, {39985.`, 921.21`}, {39986.`, 924.25`}, {39987.`, > 936.29`}, {39988.`, 938.4`}, {39989.`, 940.05`}, {39992.`, > 940.05`}, {39993.`, 926.68`}, {39994.`, 941.26`}, {39995.`, > 931.2`}, {39996.`, 932.`}, {39999.`, 923.9`}, {40000.`, > 927.65`}, {40001.`, 908.3`}, {40002.`, 915.5`}, {40003.`, > 913.`}, {40006.`, 919.4`}, {40007.`, 923.93`}, {40008.`, > 940.36`}, {40009.`, 935.55`}, {40010.`, 938.28`}, {40013.`, > 949.32`}, {40014.`, 947.8`}, {40015.`, 952.9`}, {40016.`, > 951.04`}, {40017.`, 952.25`}, {40020.`, 953.6`}, {40021.`, > 937.7`}, {40022.`, 927.18`}, {40023.`, 935.22`}, {40024.`, > 953.9`}, {40027.`, 956.99`}, {40028.`, 963.65`}, {40029.`, > 965.92`}, {40030.`, 958.65`}, {40031.`, 954.9`}, {40034.`, > 944.73`}, {40035.`, 946.11`}, {40036.`, 949.42`}, {40037.`, > 955.17`}, {40038.`, 946.22`}, {40041.`, 935.78`}, {40042.`, > 937.84`}, {40043.`, 944.34`}, {40044.`, 940.62`}, {40045.`, > 953.08`}, {40048.`, 943.18`}, {40049.`, 943.6`}, {40050.`, > 945.05`}, {40051.`, 947.39`}, {40052.`, 956.97`}, {40055.`, > 951.92`}, {40056.`, 954.73`}, {40057.`, 975.82`}, {40058.`, > 994.46`}, {40059.`, 991.78`}, {40062.`, 995.16`}, {40063.`, > 998.32`}, {40064.`, 993.94`}, {40065.`, 996.9`}, {40066.`, > 1003.9`}, {40069.`, 996.9`}, {40070.`, 1009.`}, {40071.`, > 1017.2`}}; > func = Fit[date, Table[t^i, {i, 0, 49}], t]; > deriv2func = \!\( > \*SubscriptBox[\(\[PartialD]\), \(t, t\)]func\); > and plot: > Plot[{deriv2func}, {t, First[First[date]], First[Last[date]]}, > Frame -> True, GridLines -> Automatic] > and I would like to plot additionally in this graph vertically lines, in > points which are solution of equation > deriv2fun == 0, > > Maybe I need something like this > Reduce[deriv2func == 0&& 38000< t< 41000, t, Reals], but how should I > plot this? > > Beata > > -- Daniel Huber Metrohm Ltd. Oberdorfstr. 68 CH-9100 Herisau Tel. +41 71 353 8585, Fax +41 71 353 8907 E-Mail:<mailto:dh at metrohm.com> Internet:<http://www.metrohm.com>