Re: Re: bad Mathieu functions
- To: mathgroup at smc.vnet.net
- Subject: [mg108312] Re: [mg108291] Re: bad Mathieu functions
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Sat, 13 Mar 2010 07:57:39 -0500 (EST)
- References: <hnakhc$5p5$1@smc.vnet.net> <201003121214.HAA13890@smc.vnet.net>
- Reply-to: drmajorbob at yahoo.com
Or, a trifle simpler: ce1[r_, q_, z_] := MathieuCPrime[MathieuCharacteristicA[r, q], q, z] Plot[I ce1[3, SetPrecision[qq, 123], I], {qq, 750, 1000}, Frame -> True, Axes -> None] or simpler yet: Plot[I ce1[3, qq, I], {qq, 750, 1000}, Frame -> True, Axes -> None, WorkingPrecision -> 123] Note that this doesn't work at all, and it's much slower: ce1[r_, q_, z_] := MathieuCPrime[MathieuCharacteristicA[r, SetPrecision[q, 123]], q, z] Plot[I ce1[3, qq, I], {qq, 750, 1000}, Frame -> True, Axes -> None] Does anyone have a clue why that is? Bobby On Fri, 12 Mar 2010 06:14:16 -0600, Peter Pein <petsie at dordos.net> wrote: > Am 11.03.2010 12:35, schrieb becko BECKO: >> I am no expert in Mathieu functions, but I don't think this gives the >> right result: >> >> ce1[r_, q_, z_] := MathieuCPrime[MathieuCharacteristicA[r, q], q, z] >> >> Plot[I ce1[3, q, I], {q, 0, 1000}] >> >> >> In another system you get a smooth graph, making very small >> oscillations about zer o as q increases. > ... > > Oh yes, these oscillations are really tiny as you can see with > Mathematica using: > > Plot[I ce1[3,q,I] /. q->SetPrecision[qq,123], {qq, 750, 1000}, > Frame->True, Axes->None] > > -- DrMajorBob at yahoo.com
- References:
- Re: bad Mathieu functions
- From: Peter Pein <petsie@dordos.net>
- Re: bad Mathieu functions