Re: quartic equation
- To: mathgroup at smc.vnet.net
- Subject: [mg108743] Re: quartic equation
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 30 Mar 2010 04:59:54 -0500 (EST)
soln = Solve[x^4 + a*x^3 + b*x^2 + c*x + d == 0, x]; Length[soln] 4 Looking at the first of the four roots x /. soln[[1]] -((1/2)*Sqrt[(1/(3*2^(1/3)))* (Sqrt[(27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^2 - 4*(-(3*a*c) + b^2 + 12*d)^3] + 27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^ (1/3) + (2^(1/3)*(-(3*a*c) + b^2 + 12*d))/ (3*(Sqrt[(27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^2 - 4*(-(3*a*c) + b^2 + 12*d)^3] + 27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^ (1/3)) + a^2/4 - (2*b)/3]) - (1/2)*Sqrt[-((1/(3*2^(1/3)))* (Sqrt[(27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^2 - 4*(-(3*a*c) + b^2 + 12*d)^3] + 27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^ (1/3)) - (2^(1/3)*(-(3*a*c) + b^2 + 12*d))/ (3*(Sqrt[(27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^2 - 4*(-(3*a*c) + b^2 + 12*d)^3] + 27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^ (1/3)) + a^2/2 - (-a^3 + 4*a*b - 8*c)/ (4*Sqrt[(1/(3*2^(1/3)))* (Sqrt[(27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^2 - 4*(-(3*a*c) + b^2 + 12*d)^3] + 27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^ (1/3) + (2^(1/3)*(-(3*a*c) + b^2 + 12*d))/ (3*(Sqrt[(27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^2 - 4*(-(3*a*c) + b^2 + 12*d)^ 3] + 27*a^2*d - 9*a*b*c + 2*b^3 - 72*b*d + 27*c^2)^(1/3)) + a^2/4 - (2*b)/3]) - (4*b)/3] - a/4 Bob Hanlon ---- Leslaw Bieniasz <nbbienia at cyf-kr.edu.pl> wrote: ============= Hi, I am totally unexperienced in MATHEMATICA, and I am looking for some advice. I need to solve a quartic equation symbolically, that is to factor a fourth order polynomial given in the power base. The coefficients of the polynomial are complicated expressions of a number of parameters, and I need to obtain expressions for the roots as functions of these parameters. Is there any way to do this? I would appreciate if anybody can send me some simple example code showing how this sort of problems can be solved. Leslaw