Re: Condensed syntax
- To: mathgroup at smc.vnet.net
- Subject: [mg113537] Re: Condensed syntax
- From: Dana DeLouis <dana.del at gmail.com>
- Date: Mon, 1 Nov 2010 05:02:39 -0500 (EST)
> I have a list of {i,j} values, > > ij = Tuples[config, 2] > > {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, {3, > 1}, {3, 2}, {3, 3}, {3, 4}, {4, 1}, {4, 2}, {4, 3}, {4, 4}} > > and I want to create a list in which the {i,j} are passed as arguments > to a function f[x,y], i.e., {f[1,1], f[1,2],..., f[4,4]}. I can do > this using the two-step process: > > g[X_List] := Apply[f, X] > Map[g, ij] > > {f[1, 1], f[1, 2], f[1, 3], f[1, 4], f[2, 1], f[2, 2], f[2, 3], > f[2, 4], f[3, 1], f[3, 2], f[3, 3], f[3, 4], f[4, 1], f[4, 2], > f[4, 3], f[4, 4]} > > Is there a way I can bypass the intermediate function g[x] and produce > the final list in a single step? Hi. If we skip the Tuples Function, two additional possible solutions = might be: Your desired solution: sol = {f[1, 1], f[1, 2], f[1, 3], f[1, 4], f[2, 1], f[2, 2], f[2, 3], = f[2, 4], f[3, 1], f[3, 2], f[3, 3], f[3, 4], f[4, 1], f[4, 2], f[4, 3], f[4, = 4]}; r = Range@4; me = Outer[f, r, r] // Flatten {f[1, 1], f[1, 2], f[1, 3], f[1, 4], f[2, 1], f[2, 2], f[2, 3], f[2, 4],= f[3, 1], f[3, 2], f[3, 3], f[3, 4], f[4, 1], f[4, 2], f[4, 3], f[4, 4]} me == sol True me = Distribute[f[r, r], List] {f[1, 1], f[1, 2], f[1, 3], f[1, 4], f[2, 1], f[2, 2], f[2, 3], f[2, 4],= f[3, 1], f[3, 2], f[3, 3], f[3, 4], f[4, 1], f[4, 2], f[4, 3], f[4, 4]} me == sol True = = = = = = = = = = HTH : >) Dana DeLouis dana.del at gmail.com