MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Generation of polynomials

  • To: mathgroup at smc.vnet.net
  • Subject: [mg112997] Re: Generation of polynomials
  • From: Bob Hanlon <hanlonr at cox.net>
  • Date: Sun, 10 Oct 2010 06:42:04 -0400 (EDT)

Here are a few ways:

n = 5;

(tab1 = Table[Total[Flatten[
      Table[x^j*y^k, {j, 0, m}, {k, 0, m - j}]]],
    {m, 0, n}]) // Column

tab2 = Table[
    Expand[(1 + x + y)^k], {k, 0, n}] /.
   {c_Integer*x^j_. :> x^j,
    c_*y^j_. :> y^j,
    c_*x^j_.*y^k_. :> x^j*y^k};

tab3 = Table[Total[Total[
     (LowerTriangularize[Array[1 &, {m + 1, m + 1}]] //
        
        Reverse)*
      Table[x^j*y^k, {j, 0, m}, {k, 0, m}]]],
   {m, 0, n}];

tab4 = Table[Total[Total[
     (Reverse /@ UpperTriangularize[Array[1 &, {m + 1, m + 1}]])*
      Table[x^j*y^k, {j, 0, m}, {k, 0, m}]]],
   {m, 0, n}];

tab1 == tab2 == tab3 == tab4

True


Bob Hanlon

---- "pier.mail at gmail.com" <pier.mail at gmail.com> wrote: 

=============
Hi!
This is probably trivial, but I am a total novice with Mathematica...
is it possible to generate all complete polynomials in x,y up to a
certain degree, i.e

1
1+x+y
1+x+y+x^2+y^2+xy
1+x+y+x^2+y^2+xy+x^3+y^3+x^2y+y^2x
1+x+y+x^2+y^2+xy+x^3+y^3+x^2y+y^2x+x^4+y^4+x^3y+y^3x+x^2y^2
...

Thanks,
Pier



  • Prev by Date: Re: Slow image import
  • Next by Date: Re: Manipulate Series Expansions
  • Previous by thread: Re: Generation of polynomials
  • Next by thread: Re: Generation of polynomials