Re: Solving a non-linear system to find coefficients
- To: mathgroup at smc.vnet.net
- Subject: [mg113035] Re: Solving a non-linear system to find coefficients
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 12 Oct 2010 04:23:04 -0400 (EDT)
Don't enter the c[2] and a[3,1] using subscripts. Needs["NumericalDifferentialEquationAnalysis`"] eqs = RungeKuttaOrderConditions[4, 4, ButcherRowSum -> True, RungeKuttaMethod -> Explicit]; Solve[Flatten[Join[eqs, {c[2] == 1/2, a[3, 1] == 0}]]] Bob Hanlon ---- Allamarein <matteo.diplomacy at gmail.com> wrote: ============= Like suggested, I have just tried: Needs["NumericalDifferentialEquationAnalysis`"] eqs = RungeKuttaOrderConditions[4, 4, ButcherRowSum -> True, RungeKuttaMethod -> Explicit]; Solve[Flatten[ Join[eqs, {Subscript[c, 2] == 1/2, Subscript[a, 3, 1] == 0}]]] My "adviser" reports I should get this output (as a matter of fact it is the correct result): {{Subscript[b, 1] -> 1/6, Subscript[a, 2, 1] -> 1/2, Subscript[a, 4, 1] -> 0, Subscript[a, 3, 1] -> 0, Subscript[b, 2] -> 1/3, Subscript[a, 4, 2] -> 0, Subscript[a, 3, 2] -> 1/2, Subscript[a, 4, 3] -> 1, Subscript[b, 3] -> 1/3, Subscript[c, 4] -> 1, Subscript[b, 4] -> 1/6, Subscript[c, 3] -> 1/2, Subscript[c, 2] -> 1/2}} Instead I get this puzzled result: {{Subscript[b, 1] -> 1/6, Subscript[a, 2, 1] -> 1/2, Subscript[a, 3, 1] -> (-1 + 3 Subscript[b, 3])/(6 Subscript[b, 3]), Subscript[a, 4, 1] -> 0, Subscript[c, 2] -> 1/2, Subscript[a, 3, 1] -> 0, Subscript[b, 2] -> 1/3 (2 - 3 Subscript[b, 3]), Subscript[a, 4, 2] -> 1 - 3 Subscript[b, 3], Subscript[a, 3, 2] -> 1/(6 Subscript[b, 3]), Subscript[a, 4, 3] -> 3 Subscript[b, 3], Subscript[c, 4] -> 1, Subscript[b, 4] -> 1/6, Subscript[c, 3] -> 1/2, Subscript[c, 2] -> 1/2}, {Subscript[b, 1] -> 1/6, Subscript[a, 2, 1] -> 1, Subscript[a, 3, 1] -> 3/8, Subscript[a, 4, 1] -> (-1 + 4 Subscript[b, 4])/(4 Subscript[b, 4]), Subscript[c, 2] -> 1/2, Subscript[a, 3, 1] -> 0, Subscript[b, 2] -> 1/6 (1 - 6 Subscript[b, 4]), Subscript[a, 4, 2] -> -(1/(12 Subscript[b, 4])), Subscript[a, 3, 2] -> 1/8, Subscript[a, 4, 3] -> 1/(3 Subscript[b, 4]), Subscript[b, 3] -> 2/3, Subscript[c, 4] -> 1, Subscript[c, 3] -> 1/2, Subscript[c, 2] -> 1}, {Subscript[b, 1] -> 1/6 (1 - 6 Subscript[b, 3]), Subscript[a, 2, 1] -> 1/2, Subscript[a, 3, 1] -> -(1/(12 Subscript[b, 3])), Subscript[a, 4, 1] -> 1/2 (-1 - 12 Subscript[b, 3]), Subscript[c, 2] -> 1/2, Subscript[a, 3, 1] -> 0, Subscript[b, 2] -> 2/3, Subscript[a, 4, 2] -> 3/2, Subscript[a, 3, 2] -> 1/(12 Subscript[b, 3]), Subscript[a, 4, 3] -> 6 Subscript[b, 3], Subscript[c, 4] -> 1, Subscript[b, 4] -> 1/6, Subscript[c, 3] -> 0, Subscript[c, 2] -> 1/2}, {Subscript[b, 1] -> 1/12 (6 - (4 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) + ( 2 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) + 1/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - (2 Subscript[c, 2])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + (2 Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - ( 8 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 4 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]))), Subscript[a, 2, 1] -> Subscript[c, 2], Subscript[a, 3, 1] -> Subscript[c, 3] - ((Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2])), Subscript[a, 4, 1] -> 1/12 (-38 + 60 Subscript[c, 2] - ( 16 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) + ( 8 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) + 6/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - (6 Subscript[c, 2])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - (6 Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + ( 70 Subscript[c, 2] Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - (60 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - ( 40 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 20 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - 3/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 3 Subscript[c, 2])/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 46 (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 32 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + (180 \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 3 (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3])^2 (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 3 Subscript[c, 2] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3])^2 (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 52 (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 46 Subscript[c, 2] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]))), Subscript[c, 2] -> 1/2, Subscript[a, 3, 1] -> 0, Subscript[b, 2] -> 1/12 (1/( 1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) - (2 Subscript[c, 3])/( 1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) + ( 4 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) - ( 2 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) + 1/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + ( 8 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 4 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - 1/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + Subscript[c, 2]/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]))), Subscript[a, 4, 2] -> 1/12 (50 - 60 Subscript[c, 2] + ( 16 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) - ( 8 (Subscript[c, 2] - Subscript[c, 3]) \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])^2) - 6/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + (6 Subscript[c, 2])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + (6 Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - ( 70 Subscript[c, 2] Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + (60 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + ( 40 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/((-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 20 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + 3/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 3 Subscript[c, 2])/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 58 (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 32 (Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/( Subscript[c, 2] (-2 + 4 Subscript[c, 2]) (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - (180 \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 3 (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3])^2 (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 3 Subscript[c, 2] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3])^2 (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) + ( 52 (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - ( 46 Subscript[c, 2] (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3]))/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]))), Subscript[a, 3, 2] -> ((Subscript[c, 2] - Subscript[c, 3]) Subscript[c, 3])/( Subscript[c, 2] (-2 + 4 Subscript[c, 2])), Subscript[a, 4, 3] -> (-1 + 3 Subscript[c, 2] - 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] + Subscript[c, 3] - 3 Subscript[c, 2] Subscript[c, 3] + 2 \! \*SubsuperscriptBox[\(c\), \(2\), \(2\)] Subscript[c, 3])/((3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])), Subscript[b, 3] -> 1/12 (2/( 1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) - (2 Subscript[c, 2])/( 1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) - 2/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + (2 Subscript[c, 2])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) - (2 Subscript[c, 3])/( Subscript[c, 2] Subscript[c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]) + 1/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)])) - Subscript[c, 2]/((1 - Subscript[c, 2] - Subscript[c, 3] + Subscript[c, 2] Subscript[c, 3]) (Subscript[c, 2] Subscript[ c, 3] - \! \*SubsuperscriptBox[\(c\), \(3\), \(2\)]))), Subscript[c, 4] -> 1, Subscript[b, 4] -> ( 3 - 4 Subscript[c, 2] - 4 Subscript[c, 3] + 6 Subscript[c, 2] Subscript[c, 3])/( 12 (-1 + Subscript[c, 2]) (-1 + Subscript[c, 3]))}}