Re: Plot of (2 x^2 - x^3)^(1/3)
- To: mathgroup at smc.vnet.net
- Subject: [mg112132] Re: Plot of (2 x^2 - x^3)^(1/3)
- From: chungyuandye <chungyuandye at gmail.com>
- Date: Wed, 1 Sep 2010 06:27:58 -0400 (EDT)
- References: <i5aqbk$eru$1@smc.vnet.net> <i5ied4$kbl$1@smc.vnet.net>
On 8=E6=9C=8831=E6=97=A5, =E4=B8=8B=E5=8D=884=E6=99=8227=E5=88=86, Peter <i= nsomnia.ber... at gmail.com> wrote: > On 28 Aug., 13:02, Bernard <bernard.vuilleum... at edu.ge.ch> wrote: > > > I see in Calcul Diff=E9rentiel et int=E9gral, N. Piskounov, Edition= s > > MIR, Moscou 1970, on p. 210 the graph of (2 x^2 - x^3)^(1/3) with > > negative values for x > 2, something like : > > > Plot[Piecewise[{{(2 x^2 - x^3)^(1/3), x <= 2}, {-Re[(2 x^2 - > > x^3)^(1/3)], =C2 x > 2}}], {x, -1, 3}] > > > When I plot this function with : > > > Plot[(2 x^2 - x^3)^(1/3) // Re, {x, -1, 3}] > > > I obtain positives values for x > 3. I don't understand why. > > Thank you very much for your help ! > > Hi Bernard, > > maybe you want > > Plot[Root[#^3-(2 x^2-x^3)&,1]//Re,{x,-1,4}] > > ? > > Peter Unprotect[Power]; Power[x_?Negative, Rational[p_, q_?OddQ]] := (-(-x)^(1/q))^p; Protect[Power]; Plot[(2 x^2 - x^3)^(1/3), {x, -1, 3}]