Re: Expected value of the Geometric distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg118480] Re: Expected value of the Geometric distribution
- From: "Sjoerd C. de Vries" <sjoerd.c.devries at gmail.com>
- Date: Fri, 29 Apr 2011 07:33:05 -0400 (EDT)
- References: <ipbg1f$ahf$1@smc.vnet.net>
Hi Tonja, The problem is that this is a *discrete* probability distribution.So, instead of integrating you need to sum the terms: In[15]:= Sum[(1 - p)^k*p*k, {k, 1, \[Infinity]}] Out[15]= (1 - p)/p As of Mathematica 8 Mathematica knows a lot of distribution stuff, so you coul also say: In[14]:= Expectation[x, x \[Distributed] GeometricDistribution[p]] Out[14]= (1 - p)/p Cheers -- Sjoerd StackOverflow for fast answers to Mathematica questions http://stackoverflow.com/questions/tagged/mathematica On Apr 28, 12:37 pm, "Tonja Krueger" <tonja.krue... at web.de> wrote: > Hi all, > I want to calculate expected value of diverse distributions like the Geometric distribution (for example). > As I understand this, the expected value is the integral of the density function *x. > But when I try to calculate this: > Integrate[(1-p)^k*p*k,k] > I get this as the answer: > ((1 - p)^k p (-1 + k Log[1 - p]))/Log[1 - p]^2 > Instead of: (1-p)/p. > I would be so grateful if someone could explain to me what I'm doing wrong. > Tonja > ___________________________________________________________ > Empfehlen Sie WEB.DE DSL Ihren Freunden und Bekannten und wir > belohnen Sie mit bis zu 50,- Euro!https://freundschaftswerbung.web.de