Re: Ploting a transformation of a set
- To: mathgroup at smc.vnet.net
- Subject: [mg123472] Re: Ploting a transformation of a set
- From: Barrie Stokes <Barrie.Stokes at newcastle.edu.au>
- Date: Thu, 8 Dec 2011 05:25:53 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <4EDCB5F0.813B.006A.0@newcastle.edu.au> <jbkj0l$i30$1@smc.vnet.net>
Hi Dan As I suspected, the sky's the limit. This is very elegant, because the map is coded very explicitly in your approach. Barrie >>> On 07/12/2011 at 10:13 pm, in message <201112071113.GAA04114 at smc.vnet.net>, Dan <dflatin at rcn.com> wrote: > Here is another version of the grid approach, this time using grid > lines conforming to the color function used in the thread above. > > Manipulate[ > Module[{g1,g2,map,opts,n=5,pp,ppm}, > g1[t_,k_]:=2{t+(k/n),-t}; > g2[t_,k_]:=2{t-(k/n),t}; > map=({x,y}\[Function]{(x+a y)^b,(a x+y)^b}); > opts=Sequence[PlotRange->{{0,2},{0,2}}, > Frame->True,Axes->False, > ImageSize->200,ImagePadding->{{30,5},{20,5}}]; > pp[g_,kmin_,kmax_,color_]:=ParametricPlot[Table[g[t,k], > {k,kmin,kmax}],{t,-5,5}, > PlotStyle->color,Evaluate@opts > ]; > ppm[g_,kmin_,kmax_,color_]:=ParametricPlot[Table[map@@g[t,k], > {k,kmin,kmax}],{t,-5,5}, > PlotStyle->color,Evaluate@opts > ]; > Grid[{{ > Show[{pp[g1,0,2n,ColorData[1][1]],pp[g2,-n,n,ColorData[1][2]]}], > Show[{ppm[g1,0,2n,ColorData[1][1]],ppm[g2,-n,n,ColorData[1] > [2]]}] > }}] > ], > {{a,0.5},0,1,0.05}, > {{b,0.5},0.1,1,0.05} > ]