Re: AbsoluteOptions and NDSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg123884] Re: AbsoluteOptions and NDSolve
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Tue, 27 Dec 2011 05:38:20 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201112262230.RAA20909@smc.vnet.net>
The output of NDSolve does not have options. Use StepMonitor xList = Reap[nds = NDSolve[ {y'[x] == y[x] Cos[x + y[x]], y[0] == 1}, y, {x, 0, 30}, StepMonitor :> Sow[x]][[1]]][[2, 1]]; steps=Differences[xList]; Take[steps,10] {0.00017069, 0.00034138, 0.00034138, 0.00034138, 0.0034138, \ 0.0034138, 0.0034138, 0.0034138, 0.0227572, 0.0227572} Bob Hanlon On Mon, Dec 26, 2011 at 5:30 PM, Snark <gadior at gmail.com> wrote: > Hi, > > I am perplexed by the behavior of AbsoluteOptions on NDSolve. I tried > getting the actual value of StartingStepSize and got something weird. > > In[]:= AbsoluteOptions[NDSolve[eqSys, {c[x, t], T[x, t]}, {x, 0, xb}, > {t, 0,1}]],StartingStepSize] > Out[]:= {{AbsoluteOptions[c[x,t]->InterpolatingFunction[{{0.,5.*10^-6}, > {0.,1.}},<>][x,t],StartingStepSize],AbsoluteOptions[T[x,t]- >>InterpolatingFunction[{{0.,5.*10^-6},{0.,1.}},<>] > [x,t],StartingStepSize]}} > > Isn't there a way to fetch absolute options from NDSolve? > > Thanks in advance > > -- Bob Hanlon
- References:
- AbsoluteOptions and NDSolve
- From: Snark <gadior@gmail.com>
- AbsoluteOptions and NDSolve